ELECTRONIC MUSIC & HOME RECORDING PATCH NOTATION GEORGE RUSSELL ECHO SOFTWARE MORE VOICE F/V PROJECTS ### INTRODUCING... TWO-CHANNEL ANALOG DELAY UNIT FOR AMBIENCE SYNTHESIS AND DELAY ### **FEATURES** - *TWO INDEPENDENT CHANNELS - *3072 STAGES OF DELAY PER CHANNEL - * ADJUSTABLE INPUT AND OUTPUT LEVELS WITH INPUT OVERLOAD INDICATION - *INTERNAL OR EXTERNAL VOLT-AGE CONTROLLED DELAY TIME - * COMPANDOR IN EACH CHANNEL - * 3 MODES/CHANNEL WITH ADJUST-**ABLE MIX** - FOR MUSIC EFFECTS delay can do for home music reproduc- ponentry to enjoy an ambience system, ponents, chassis (11½" x 10" x 4"), 2 dimensional. Without the mixture of di-mance and yet still serve to create rect and delayed sounds that a large hall strikingly realistic spaciousness in your bucket-brigade semiconductor techno- pose. logy has made it possible to offer a reasonably priced delay unit that can trans- signed for use in music reproduction form your listening room into a con-systems as an ambience synthesizer, its cert hall. Using your present stereo voltage controlled clock and mixing capasystem, the 2AS-A, and whatever you bilities allow it to be configured in a have in the way of 2 additional speakers number of ways for delay effects such as and 2 channels of power amplification—phasing, flaging, chorous, and vibrato, Exyou have all the parts to put together an ternal voltage control for special effects * CONVENTIONAL REVERB OUTPUT ambience system that is capable of creat- must be user supplied. ing the kind of 'space' you enjoy music If you haven't heard what analog in. You don't need state-of-the-art com- and includes the circuit boards, comtion, you're missing something. Let's face The secondary power amplifiers and cover 120VAC power supply, assembly it, stereo in your living room is flat and speakers can be of very modest perfor- instructions and application notes, provides, almost all music reproduced in listening room, If you don't have 2 extra the home is lifeless, Quadraphonics has power amp channels on hand, we offer not proved to be the solution to this several low cost, low power amps in kit problem. The recent developement of form that would be ideal for this pur- Although the 2AS-A has been de- The 2AS-A is sold in kit form only 2AS-A Analog Delay Unit \$250.00 ppd. Cont. U.S. **Southwest Technical** Products Corp. 219 W. Rhapsody, San Antonio, Texas 78216 Landan: Southwest Technical Products Co., Ltd. Tokyo: Southwest Technical Products Corp./Japan | Bank #Expire Date | |-------------------| | | | | | | | STATEZIP | | _ | # STAFF EDITOR Marvin Jones ASSISTANT EDITOR Linda Kay Brumfield CONTRIBUTING EDITORS Craig Anderton Gary Bannister David Ernst John S. Simonton, Jr. PRODUCTION Jarice Kirkendoll Donald Cooper Marcina Howard POLYPHONY is published bimonthly at 1020 W. Wilshire Blvd., Oklahoma City, OK 73116, by Polyphony Publishing Co. Entire contents copyright © 1979, Polyphony Publishing Co. rights reserved. No portion of this publication may be reproduced in any manner without written permission from the publisher. Application to mail at second class rates is pending at Oklahoma City, OK. ADVERTISING rate and deadline card available. Contact Marvin Jones at (405) 842-5480. DEALERS & DISTRIBUTORS bulk purchase pricing available upon request. Contact Marvin Jones. SUBSCRIPTIONS accepted on a one year (6 issues) basis. Rates: Mailed in USA \$8.00/yr Canada/Mexico \$9.00/yr International \$10.00/yr BACK ISSUES are all available at \$2.00 each. Send SASE for listing of issues and contents. CHANGE OF ADDRESS notifications should include former address and zip code as well as the new address. Also include the numbers at the top of the mailing label so we can make your change as efficiently as possible. POLYPHONY PO Box 20305 Oklahoma City, OK 73156 Phone (405) 842-5480 ADDRESS CORRECTIONS REQUESTED # CONTENTS ISSN: 0163-4534 Volume 4, Number 4 January/February 1979 ### FEATURES | JOT- Shorthand Notation | |--| | Name That Tone - Again! | | CONSTRUCTION More Projects with F to V Converter32 by John Blacet | | COLUMNS and REGULARS | | Letters | | Polyphony Reviews | | Home Recording: Build A Graphic Monitor12 by Craig Anderton | | Composer Profile: George Russell14 by David Ernst | | Industry Notes16 | | Experimenters Circuits: A Super VCA24 by Gary Bannister | | Lab Notes: ECHOechoecho | | Equipment Exchange37 | | Local Happenings37 | | Index to Volume 4 | # gentle electric model 101 PITCH AND ENVELOPE FOLLOWER Now you can control your synthesizer with any monophonic instrument or voice ### TWICE THE INTERFACE AT HALF THE PRICE Wide tracking range: 26Hz to 20 KHz • Accurate 1v/oct. tracking: 1/20th semiltone—200Hz to 3KHz • Footswitch or synthesizer controllable pitch sustain • Fundamental frequency pulsewave output • Linear and Log envelope outputs • Gate and Trigger outputs • Retriggering sensitivity control • Compressor • Mic preamp • \$549. Also available as a module for Aries and Serge synthesizers. Write for our free detailed brochure. Dealer inquiries welcome. # gentle electric 130 Oxford Way, Santa Cruz, CA 95060 (408) 423-1561 # **INTRODUCING** # Factory Representatives Doug Slocum Synthetic Sound Labs 1 Gale Road Bricktown, NJ 08723 (201) 477-3319 Gary Bannister 7208 New Augusta Rd Indianapolis, IN 46268 (317) 293 0606 PAIA Factory Rep's are people who have used PAIA equipment for years. Give them a call, they'll be happy to tell you all about PAIA gear and arrange for a demonstration. # LETTERS... ### AUTHORS ADDENDA Upon re-reading my article in the last issue of Polyphony, it occurred to me that several points in the article might be clarified. (1) There is a hidden assumption in the "rhythm-tuning" method which should be made more explicit. As one can see from the chart, the frequency ratios are all ratios of integers, which means that they are harmonic series intervals. The accurate method of tuning up the sequence, therefore, is by zero beating the sequencer controlled VCO against harmonics of a reference signal. The intervals thus obtained are not (except the octave) equal to the intervals of equal temperament; hence cautionary note about quantized sequencer outputs in the article. As an extension to the above, it can be seen that the "1/4 tone" detunings given for the Oberheim mini-sequencer are not true 1/4 tones. Short of calculating the exact frequency ratio involved and using a frequency counter, the appropriate method would be to approximate the given interval by ear. In my experience, this works well enough. (2) The method outlined in the article, although generally a solution to rhythm tuning, does in fact have certain limitations. This became obvious to me upon rereading the discussion sequencer rythmn tuning in The Technique of Electronic Music, by Thomas Wells and Eric Wells and Vogel give an example of a rather intricate rhythmn and describe a method for tuning the sequencer pots which requires a voltmeter. While it is possible calculate а series frequency ratios using my method, which would theoretically work for their example, it would be totally impractical to tune the resultant pitch sequence. For those whose music is limited to a restricted set of relative note durations (i.e. most pop music), my method works quite well and does not require the purchase of a voltmeter; for those who do not wish to be so restricted, I would suggest the purchase of the Wells-Vogel book and a DVM. > John Duesenberry Boston School of Electronic Music ### MONKEY BUSINESS One thing concerning the ape-peggio synthesist on the cover of the Sep/Oct issue: This reminds me of the animal trainer who had his chimp smoke a cigarette to show the audience how 'silly' they look. Come to think of it, a monkey could play better than the present AM fare. Robert J Abend II E. Syracuse, NY ### LOST GNOME I've run into a REALLY strange problem, and could use some advice and/or help. Back in late October I received a Gnome for finishing assembly and repairs— I think. The box contained no letter of explanation and, worst of all, no return address. The Gnome has been very distinctly customized; the board and controls have been mounted in a custom wood and plexiglass cabinet that more resembles a computer console. Also included was a Godbout power supply. The cabinet has some very nice custom graphics on it-- white on smoked plexiglass. There was a receipt for the graphics enclosed. An effort to locate the owner by way of the Admad Company (the address on the graphics receipt) has failed. I have no more information except a Sunnyvale, CA postmark. The unit was mailed Parcel Post Uninsured, by the way. I'm hoping that the readers of Polyphony may be able to help me find the lost Gnome's owner. Any ideas? Gary Bannister 7208 New Augusta Rd. Indpls., IN 46268 # AUDIO for PLEASURE Audio Amateur, now in its tenth year, is publishing a wide range of articles, all fully tested, that helps you to build your own sound system from scratch or construct the parts of it you need. Our back issues are all available. And TAA's subsidiaries offer kits of parts for most projects—or can tell you where to find them. You're already into the exciting world of direct creation of sound—why not go the rest of the way into the very best reproduction gear available? We offer full construction articles for mixers, amplifiers, power supplies, preamps, meters, overload indicators, equalizers, VU meters, ambient sound adaptors, tonearms and all sorts of speakers from small extensions to large electrostatics to 24" sub-woofers. # Great articles out of our past 1970 "Price, Time and Value" surveys nine years of the fortunes of used equipment. An all silicon, complementary output, 20W per channel amplifier, fail-safe overload protected by Reg. Williamson. A high efficiency bookshelf speaker by Peter J. Baxandall. How do update and improve your Dynaco PAT-4 preamp. A visit to the Heath Co. 1971 A superb,
simple, high quality preamplifier by Reg Williamson; A 4+4 microphone mixer, using four ICs in a compact chassis, with eight inputs and two-channel output. A four channel decoder for adding a new dimension to listening: cost to build: \$12.50. Two four-channel encoders, one with microphone preamps, to put four signals on two tape tracks. Three voltage/current regulated power supplies for better power amp performance. 1972^A nine octave graphic equalizer with slide pots by Reg Williamson. A 10½" reel tape transport, a full-range electrostatic loudspeaker and a 900 watt tube amplifier for driving the electrostatic panels directly. A high quality op amp preamp, Heath AR15/AR1500 modifications. A new type A + B, low cost 35W power amp, electronic crossovers for bi- and tri-amplifier operation. All about microphones, and tuning bass speakers for lowest distortion. 1973 Construction: Five transmission line speakers: 8" to 24" drivers, washer, electrostatic amplifier II, and customized Dyna Mark II and Advent 101 Dolby. How to photograph sound, power doubling, microphones, Jung on IC op amps, Williamson on matching and phono equalization, and much more. 1974 A perfectionist's modification of the Dynaco PAS tube preamp, a 1974 mid/high range horn speaker, a wall-mounted speaker system, an IC preamp/console mixer by Dick Kunc, a family of regulated current limited power supplies, a switch & jack panel for home audio, grounding fundamentals, low-level phono/tape preamp with adjustable response, an IC checker, a lab type ± 15V regulated supply. A series on op amps by Walt Jung and kit reports on an electret microphone and a Class A headphone amplifier. 1975 The superb Webb transmission line speaker construction article, how to test loudspeakers, a test bench set of filters, a variable frequency equalizer, building and testing Ampzilla, a power amp clipping indicator, a compact tower omni speaker, controls for two systems in three rooms. A visit to Audio Research Corp., an ultra low distortion oscillator, all about filters by Walt Jung, a universal filter for either audio garbage or crossover applications. An electrostatic speaker and complete schematics for Audio Research Corp.'s SP-3A-1 preamp, Heath's XO-1 and the Marantz electronic crossovers. 1976 Three mixers by Ed Gately, a vacuum system for cleaning discs, a 500 per channel amp for electrostatic speakers, a silent phono base, a perfectionist's tonearm, re-mods for Dyna's PAS preamp, Jung on active filters, a white noise generator/pink filter, A-Z tape recorder set-up procedures by Craig Stark, modifying the Rabco SL-8E, a high efficiency speaker system for Altec's 604-8G, uses for the Signetics Compandor IC, modifying Heath's IM (tube) analyzer, simple mods for Dyna's Stereo 70 amp, a tall mike stand. Kit reports: the Ace preamp, Heath's 200W per channel amp, Aries synthesizer, Heath's IO-4550 oscilloscope. 1977 Walt Jung's landmark series on slewing induced distortion, a wood/paper/epoxy horn, Reg Williamson's Super Quadpod, experiments with passive radiator speakers, a high efficiency electrostatic speaker with matching low-power direct-drive amplifier, modifying the AR turntable for other arms, do-it-yourself Heil air motion loudspeakers, a \$10 Yagi FM antenna, Ed Gately's 16-in/two out micromixer, the speaker saver: complete stereo system protection. Audio Research modifies the Dyna Stereo 70; the super output buffer, a 101dB precision attenuator. 1978 Modular equipment packaging, A PAT-5 preamp modification, a radio system for Hospitals, supply regulation for Dyna's Mark III amp, B.J. Webb on phono interfacing and record cleaning, a 24" common bass woofer, a TV sound extractor, modifying the Formula 4 tonearm, a phono disc storage cabinet, Jung on IC audio performance and noise control, a visit to Peter Walker's Quad factory, a small horn enclosure, an audio activated power switch, the Nelson Pass 40W class A amplifier, a thermal primer, a capacitor tester, recording with crossed cardioids. Kit reports: Heath IC 1272 audio generator, Heath's IM5258 harmonic distortion analyzer, Hafler preamp, Dynaco's octave equalizer, West Side Electronics pink noise generator. | eports on an electret microphone and a Class A | neadphone amplifier. | generator. | | |--|---|---|--| | Subscription order form: The Audio Amateur, P.O. Box 176, Peterborough NH 03458, USA Enter my subscription order for The Audio Amateur as follows: The eight issues of 1979-80 @ \$23.00 The four issues of 1979 @ \$12.00 The four 1978 issues @ \$12 The four 1977 issues @ \$10 The four 1977 issues @ \$10 The four 1976 issues @ \$10 The four 1971 issues @ \$6 The four 1975 issues @ \$8 Send back issues UPS @ \$1 extra | | REMITTANCE DETAILS I enclose \$ Money Order Charge Card authorization Card No. MasterCharge Visa/BAC Bank No Expires/_ Minimum Charge Order \$10. | | | Name | | | Signature | | Street & No | State iption will be refunded after my fayable to The Audio Amateur. R | Rates above are for USA ONLY, Centra | riease allow up to six weeks for delivery. | # POLYPHONY REVIEWS Moving Pictures by Michael Gilbert Available by mail from Gibex Music, Riverglade 104 E. Hadley Rd, Amherst, MA 01002 for \$6.85 (includes postage and handling). "Moving Pictures" is the first album by Michael Gilbert, whose background and development has been quite varied. His broad tastes in composition and technique are well showcased on this album. I sense that the material used was collected over a period of time, as each composition seems to be a very intense study on the themes and techniques being used in that particular song. Other pieces are equally well presented, but deal with radically different types of expression; if nothing else it just takes a while to shift gears and get your chops down again. So, in this respect, the album is a good 'sampler' or anthology of a number of progressive music styles. Side 1 starts with the "Moving Pictures Logo", which is unfortunately the shortest cut on the album. The musical and sonic coherency presented in 'Logo' make the piece conclude much sooner than I would expect. Multi-layered sequencing with string and drum parts operate within a very strong tempo context, yet there is little reference to a strict time signature. The longest cut of the album follows, "Ascents". Throughout this work is found a unique and successful blend of of the newest and most technical musical developments with some of the oldest and most primitive techniques. The theme introduced by the wood flutes at the beginning is carried throughout the development and is frequently countered wit.h electronic themes and intermittent effects. Sometimes the electronics attempt to duplicate the basic theme: sometimes the distractions shake the listener from the hypnosis of the basic theme. With each new conflict, the development becomes more complex and hectic. Despite the periodic resolution with vocal choirs, organs, and synthesized flute voicings, the final resolution could be nothing but a reinstatement of the opening theme. A really well done piece. "Unwinding" closes side one with a study of 'de-mechanization' initially complex structure. The sequenced FM timbres move through a number of changes accompanied by a noise rhythm structure. Eventually the sequence slows, and the theme evolves to a pure tone structure at the end. Very relaxing. I should also mention that the pressing and mix on this album are really superb. The wide dynamic range utilized in many of these compositions is accurately reproduced with little distraction from surface noise. That seems to be an increasingly rare thing these days. Side two carries a number of shorter studies, each of which is more of a specialized timbre study or 'electronic tone poem'. The opening "Other Voices/ Other Rooms" is a very distant sound, free from tempo or rhythmic indications, and accented by reverb and muting of the major statements. "Steel Clouds" is based primarily on percussion instruments, and uses a number of miked instruments in addition to the processed and synthesized signals. "Winter Light" is a chordal study with little melodic emphasis. What appears to be processed guitar is a major element of this study. "Plant Life" seems more machine-like, with heavy use of sequencers, than one would expect from the title. Nevertheless. electronic effects are a bit more solid here than in some other cuts, and the music flows very well. Side two closes with "Phase", which is another of those cuts that leaves you wanting more. The stereo bass line serves as an integral part of the melodic development as well as providing a basis for other parts. One of the more interesting techniques used here is the increase in stereo activity during the final fade, which is actually a very long fade. You find your self listening to the music more and more as the music moves further away; thus, the listeners unresolved desire to hear more of the piece. Much of the technology on this album is very tastefully used, which sets the result far above other music which has used similar timbres, techniques, and mixes. The music is very emotional. "Moving Pictures" is not so much for those who want to explore new horizons of expression as it is for those who are interested in how the technology we have
gained so far can be solidly integrated into existing musical heritages. ### I Just Got Here Myself by Pat Gleeson (This album is currently unreleased, but is expected out soon.) album, This finally, provides the electronic music community with a full musical statement from Pat Gleeson. And a good one it is. Unlike the first two albums, 'Just Got Here' contains all original material: Pat Gleeson is every bit as much a composer as the synthesist, arranger and engineer he proved himself to be on the first albums. His compositional tastes run to the grand orchestral statement, similar to Fast or Tomita, but there is less emphasis on searching for new timbres and an effort to extend the boundaries or capabilities of traditional voicings. From this approach, his synthesis shines with a mastery of the physics of acoustic instruments, and a grasp of which synthetic mutations of these families will provide extended, but compatible, instrumentation. Side one is "Draconian Measures". One of the first obvious achievements is the brass synthesis. Using short enveloped bursts of FM during the attack period of the main envelope, Gleeson has taken the traditional 'horn blip' patch to a more realistic 'splattered' brass which encompases not only tonguing blips, but embouchure adjustment as well. He has also perfected a guitar patch which, in conjunction with sequencing or fingering technique, gives an excellent simulation of finger-picked guitar. The stereo thunder which seperates the two major sections of the piece is well done, and the tympani near the end are more accurate than any I've heard. Overall, the complex filtering and generated harmonic structures render instrumentation which is tremendously real and 'acoustic' sounding. Subtle mixing and good ambiencing (reverb, delay, phase differencing, etc.) are the final touches to the production of a classic classical image. The composition itself is as much a major feature as the technology. Much of the composition and chord structure shows influences of George Martin. The movement of the themes through the ensemble and the balance of concurrent voicings are exceptional. Side two contains "Rainbow Delta" and "Unacceptable Dance Styles". The first few moments feature a very accurate reproduction of solo cello. That's not easy. Later on this side, solo violin parts can be distinctly heard. There is obviously a lot of work in the strings. "Rainbow Delta" uses sequences of tonal noise bursts as a rhythmic structure and bass line reinforcement near the beginning. This sounds like 'melodic explosions' and is very interesting. Based on the main theme, the strings, flutes, and organ increase the complexity of their interaction amongst sliding atonal effects in an almost free form contrapuntal style until, at the climax, a tight splice is made into a snappy disco-type ensemble. An extensive percussion pattern with a type of temple block pattern and punchy synthesizer bass line provide the basis for the too-short movement. Another tight splice drops you in the middle of a lonely nature setting replete with crickets and creatures which sets the mellower mood for a chamber orchestra with the solo violin and viola voicings mentioned earlier. Another thunderstorm, this time with blowing rain, leads to "Unacceptable Dance Styles" which is a sort of cosmic mambo that contains some of the more original patches of the album. This piece, more than the others, spotlights Gleeson's skill in keyboard technique and improvisation. Near the end, each key modulation is accented by a cymbal crash, sound effect, or cluster sweep to set off the myriad changes and developments the piece is going through. The side closes with a majestic brass/ string recap of the main themes. I really like this album. It contains a lot of innovative patching based on a solid understanding of acoustics. The composition is ambitious and well arranged. It is a good addition to any library; watch for it. $\begin{array}{c} \underline{\text{Timo SS II}} \\ \text{by Timo Laine} \\ \text{Lady Records LALP001} \end{array}$ Most guitarists who are interested in guitar synthesis are familiar with Timo, his system (one of the most extensive guitar synthesizers around), and his first release on A&M, Symphonic Slam. With his second release, Timo has started his own label, and has developed his proficiency on the synthesizer to a point where it is nearly impossible to tell that the two instruments are related at all. The pitch followers used for each string are very fast and accurate, so nothing is lost during the transition. The amount of power and guts the synthesizer adds to the sound is really amazing. In fact, one of the weaker points of the album is that the synthesizer is mixed back to the point where some of the impact is lessened in comparison to what you hear during a live demonstration. But, for the guitarist thinking of adding synthesis to his system, this album should show the degree of technical development which currently CAN be achieved with guitar synthesizers, as opposed to what you see at your local music store. The basic ensemble on the album is Timo on guitar and synthesizer, plus a bass player and a drummer. On a few cuts, additional musicians set in on other instruments. Most of the material on the album is commercially oriented, but holds a lot of technical display for those interested. Towards the end of "Cyclops" a patch is used which uses foot controlled pitch bend, or perhaps envelope generators are doing the bends, to generate a sitar type of sound. With the tablas mixed into the background, the effect is very convincing. In "The Nights About To Come", a Vanelli-type strut starts off with a synthesized brass/ sax type chorus accompanying the guitar. "Do Me Slow" shows the effects obtained with polyphonic glide and foot pedal controlled transposition, a technique which helps convince the listener that the instruments are not one. The solo in this piece also shows to good advantage the trackability of the followers where Timo is doing string bends and finger vibrato. On side two, the muted trumpet patch used on "No One Knows" sounds amazingly like there's a small dance band playing behind the guitar work. The other songs on side two are the strongest commercial contenders, "Freedom", "J J Jane", and "I'm On My Way". Most are based on rock compositions with guitar/ synthesizer solos and lots of studio processing. If you like rock music, the continued on page 35 # JOT NOTATION... # **An Electronic Music Shorthand** BY: JOHN ALLEN MITCHELL The development of any new technology brings with it the need to develop new systems of notation. Most frequently a particular form of notation is used as a means of recording a process (as with a computer program) but more importantly, notation permits the exchange of ideas -- so necessary for the maturation of any art or science. Time has proven that an art which does not develop a means with which to describe itself, or looses that ability, eventually reaches a type of stasis and becomes a tradition. To remain vital, an art must mature, and as I have just stated, maturity is a result of the free exchange of ideas via some form of notation. The field of electronic music finds no exception to that rule. While the methods of patch notation are as varied as the composers who use them, they must all have one thing in common -- reproducibility. A score which doesn't repeatedly yield the same result either for the composer or for the performer is worthless. If such is the case, an improvisation would likely serve better, so why bother. Both performers composers working with the electronic medium have as yet to settle on any one patch notation, and probably never will, as no one system seems to cover enough ground. Beaver / Krause - type flowchart notation seems to be enjoying immense popularity as of due to its clarity, reliability, and ease of adaptation to a multiplicity of systems. This method however, can be lengthy and often times unwieldy. What is needed then, is a means by which electronic music patches can be quickly and concisely notated. What we need is an electronic music shorthand. The notation introduced here, (which we shall call "JOT" for the sake of brevity) combines certain aspects of standard flowcharting methods with symbols derived from mathematics and welding (yes Virginia, Welding!). Jot presents several distinct advantages: 1. Jot is space saving. A patch recorded in Jot generally requires less space than one in flowchart notation. This is particularly advantageous on already— overcrowded music manuscripts where space is at a premium. 2. Jot can be typed. This comes in handy where a neat copy is required, but a template plus graph paper are unavailable. The fact that it can be printed with but little modification, makes for space saving and efficient means of cataloging patches with the aid of a microcomputer and printer. In this manner, not only could thousands of patches be stored on cassettes, but by employing a modem, they could be "traded" with a friend in Timbuktu via the telephone lines! 3. Jot is readily translated into flowchart notation and back again. 4. Jot can be written from a verbal description. Using conventional notation this task can prove nightmarish. Just how Jot is written and read will be expounded on shortly, but if your skills in flowchart notation are rusty, now would be a good time to dig out whatever information you may have on the subject and review. ### **WRITING IN JOT** Figure 1 is a list of CONTROLLERS, MODIFIERS (PWM, RING MOD, ETC.) FLEMENTS . SIGNAL SOURCES AMPS., FILTERS PWM PULSE-WIDTH MODULATOR OSC.(WAVEFORM GOES INSIDE) LOW - PASS NOISE BAND-PASS INVERTER HP HIGH-PASS SAMPLE AND HOLD BR BAND-REJECT MULTIPLIER (RING, MOD.) AR ATK./RLS.GEN KBD. GATE ADSR KBD- TRIG. SEO SEQUENCER KBD. PORTAMENTO EF **ENVELOPE FOLLOWER** KBD. CONTROL VOLTAGE VCA MR **VOLTAGE CONTROLLED AMP.** MIXER LFO RVB REVERBUNIT LOW FREQ. OSC. - FIG
1symbols and abbreviations we will need to implement the notation. You will notice that some of the abbreviations are already fairly standard. Also note that the geometric shapes used to denote modular functions are identical to those currently found flowchart notation. While the includes most of list the standard functions indigeneous to contemporary electronic music systems, it is a simple matter to include abbreviations non-standard or hybrid functions as required. To save time and space, it is recommended that all such added abbreviations be kept to a maximum of three letters. In figure 2 can be found the various operators along with their verbal interpretations. These operators are needed to show how the modules are grouped and/or interconnected. The framework on which the abbreviations and operators "rest" is called a structure (figure 3A). A structure composed of an element and indicator line. More often than not, the main element will be an oscillator, although it could also be a filter, VCA, or other Inputs the main module. to element are found on the upper side of the indicator line. The output from the main element is routed into the leftmost element under the indicator line (see As in flowchart 3B). notation, signal flow is presumed to be left-to-right. Ιt is to note that important the element under rightmost the indicator line is the last in the system (typically a VCA) and is presumed to terminate into a main amplifier or mixer. FIG 3A JOT STRUCTURE FIG. 3B SIGNAL FLOW TO AND FROM MAIN ELEMENT # **PUTTING IT ALL TOGETHER** Figure 4 shows the evolution of a simple patch in flowchart notation along with its equivalent in English and in Jot. As an exercise you may wish to place a sheet of paper over a figure and practice writing its equivalent. The ease with which jot can be written will be made apparent by covering both the Jot # Parts Center for ELECTRONIC GUITARISTS We have parts kits for Craig Anderton's Guitar Player column projects, as well as for the Electronic Projects for Musicians and Home Recording for Musicians projects. Individual circuit boards and components (4739, etc.) for the above are also available. Our parts kits contain electronic components, IC socke(s), circuit board, pots, and data (case & connectors not included). Look over any kit for 10 days – if not satisfied, return unassembled for refund of kit price. # SEE OUR FLYER FOR COMPLETE INFORMATION # NEW!! PROJECT #35: OCTAVE DOUBLING FUZZ | <u> </u> | |-----------------------------| | 4739 dual op amp\$1.65 | | 4739 10 pack | | CLM6000 opto-isolator\$3.50 | | | TERMS: Add \$1 to orders under \$15. Allow 5% shipping, excess refunded. VISA*:Mastercharge* call 24 hr order desk (415) 562-0636. Call res add tax. COD OK with street address Л KEYBOARD CONTROL SQ WAVE OSC JOT KBD CONTROL VOLTAGE GOES INTO THE OSC DESCRIPTION →OUT KBD AND LFO GO INTO OSC. OSC.GOES INTO BAND-PASS GOES INTO VCA. ADSR GOES INTO BAND-PASS AND VCA. KBD. TRIG AND INTO ADSR. FIG. 4 POLYPHONY -January/February 1979 # serge modular # music systems We'd like you to know about Serge Modular. We make what may be the most precise and versatile synthesizer system in use today. The Serge Modular is available either fully assembled or in money saving kit form. We made it modular, to assure that a musician (or video or computer artist, for that matter) can put modules together to ft. his or her specific needs, and also to make room for future expansion of a Serge System. ### Serge Modular Music Systems 1107-1/2 N. Western Avenue Hollywood, CA. 90029 (213) 461-7987 # Have A Project? Write It Up # For POLYPHONY JOT...: and flowchart representations and reproducing the patch from its verbal description alone. One of the reasons for Jot's relative compactness is that the system does not rely on continuous interconnection lines. This feature does away with the "octopus syndrome" (see figure 5) and all but abolishes the confusing crossovers often found in flowcharting. Examination of figure 6 will reveal some other advantages of Jot. The flowchart presented is FIG 5 FROM SYNAPSE VOL 2#5, USED WITH PERMISSION FIG. 6A from Synapse, volume 2, number 5, page 38. Note that the letter K twice in the This indicates representation. that the same keyboard control voltage is presented to the two oscillators AND the low-pass filter as well. If a seperate keyboard was desired for filter, a subscript would be used. It may already have occured to you that making an addition or deletion to a patch recorded in Jot is often reduced to the simple task of adding or erasing letter in the graphic structure. For example, the addition of a sequencer jointly control the filter in the flowchart of figure 6 might be messy. To make the same addition in Jot, we simply add expression "seq" to the topside of the indicator line as figure 6C. Like any other system, Jot is not a panacea for one's every notational ill. settings for each module must still be recorded elsewhere, and the synthesist has _ continued on page 36 10 In Canada, Lady Records are distributed by MetroDisc. Lady Records are available in the U.S. by mail order only. The Timo SS II albums are \$6.95 each postpaid. Use the handy coupon or contact: Lady Records, POBox 1463, Newport Beach, CA 92663. With a hexaphonic 360 Systems pitch to voltage converter, six Oberheim expander modules, and a Moog Taurus bass synthesizer all used in conjunction with multiprocessed guitar, Timo Laine's instrument represents one of the most advanced guitar synthesizers available today. Throw in some punchy back-up musicians, exciting studio effects, and solid rock composition and you have an album which is providing one of the strongest forces in electronic guitar work today. # \$6.95 from: LADY RECORDS, Box 1463, Newport Beach, CA 92663 | PLEASE RUSH | TIMO SSII Albums at \$6. | 95 ea. \$enclosed. | |-------------|--|--------------------| | name: | | | | address: | | | | City: | state; | zi p: | | LADY REC | ORDS, Box 14 <mark>63, Newport Be</mark> a | ich, CA 92663 | You've all probably heard of a graphic equalizer; well, this project is very similar, since it takes an input signal and divides that signal up into a certain number of bands. However. instead of re-combining these bands into an output mixer, we drive a separate LED with each output (see figure 1). With this device, we can check out the overall energy distribution of a recording with regards to frequency response. During bassy sections, the lower LEDs will light; during trebly parts, the upper LEDs will light. It's really interesting to see this monitor in action---you actually relate specific LEDs to specific instruments, not just frequency ranges. When a bass part slides down from the top of the string to the bottom, you can see a corresponding change in the illumination of the LEDs. First, credit where credit is due. To avoid the hassle of calculating the cap values for the various filter sections, I took the values given for "Room Equalizing Instrument" filters described in National's Audio Handbook. If you're interested in using this circuit strictly for equalization as opposed to visual monitoring, I suggest you refer to the Handbook for details. IN ### HOW IT WORKS Figure 2 shows the complete schematic for one filter section. The other sections are identical save for the capacitor values. The op amp is a 741---it's cheap, and the noise doesn't matter in this application; you could also use two 4136 quad op amps since there are 8 filter sections all told. The circuits are basically non-critical...I wired them all up on a piece of perf board, which worked just fine. C1 and C2 determine the resonant frequency of the filter. R2 is a bias control for the LED, which we'll get into later under calibration. This circuit is designed to work from a regulated bipolar 9V DC supply. Suitable power supplies are made by Bill Godbout Electronics (project #13A-9) and PAIA (kit #4771) if you don't already have a + 9V power supply handy. ### CALIBRATION Filter 1 Connect all the inputs of the filters together in parallel, and then connect these to the sensitivity control as shown in figure 1. Hook the sensitivity control up to a loudspeaker output. The Graphic Monitor is designed to be used with loudspeakers; if you wish to use the monitor with low level or high impedance output signals, you'll need to add some kind of buffered gain stage in front of the sensitivity control. Apply power to the monitor with the sensitivity control turned all the way down. Some of the LEDs may light up, and then again, they may not. Rotate one of the filter trimpots....at one extreme of the rotation the LED should be lit, and at the other extreme it should be off. Set the trimpot so that the LED is just barely glowing at as faint a level as possible (it helps to turn down the room lights for this!). Adjust the other trimpots so that the other LEDs glow with the same brightness; the monitor is now ready for use. By the way, if you can use matched LEDs for the display, so much the better. Put some program material through the speakers, preferably something with a wide range of frequency response dynamics. Adjust the sensitivity control so that the LEDs don't saturate to full "on" during loud passages, but are still sensitive low-level passages of music. may take a bit of fiddling to determine the optimum setting, just aim for a display that is at its very brightest during the loudest parts of a piece of music. ### APPLICATIONS OK, SO NOW I'VE GOT IT BUILT. WHAT GOOD IS IT? There are several uses for the Graphic Monitor...here are some of them. If you can come up with any more, let Polyphony know about it. 1. Mixing level monitor. If you are mixing a bunch of tunes for an album all on different days, it's an advantage to be able to listen to the monitor speakers at similar overall listening levels. having the Graphic Monitor hooked up to the speakers at all times, you can
tell if you are monitoring at a consistant level by aiming for a constant average brightness in the display. Don't touch the sensitivity control once you have it calibrated to your "optimized" listening level. 2. To keep frequency response balancing under control. I've put on a few albums and analyzed them through On one, I noticed a Monitor. tendency for the high frequency content to increase as the album progressed from cut to Since I believe this was an album where the tunes were pretty much mixed in order of appearance on the disc, the increase in high frequencies might have been due to listener ear fatigue setting in, and a turning up of the highs to compensate. Normally when using the Graphic Monitor, the highs will be like a frosting or topping--not very sustained, but dancing into view from time to time. If you start laying in too many highs, or too many boomy lows, you'll be able to see the results on the Monitor. 3. For analyzing instrument timbres. Try putting a sine wave the Monitor, then a through triangle wave, then a sawtooth wave. You'll note that the increased energy contributed by sawtooth wave's higher harmonics cause the upper Monitor lights to glow more brightly. This can be real useful---for example, want to find out how many highs are really in that percussion instrument? Feed it into the monitor and find out. Ш It's a great toy. Yes, the patterns are interesting and fun to watch---but I couldn't help noticing that in the majority of cases interesting patterns went with interesting music. It helps to keep your music varied with regard frequency balance as we discussed last issue, and this device is really an invaluable aid towards that goal. ### **MODIFICATIONS** If you want, you can add spaced filters that are between the current ones to get a half-octave response. In theory the filters should be sharper, but considering that this is a relatively relaxed application the same filter structures we've been using for the 8 step version are acceptable. Aside from that, there's not much more to talk about. Enjoy your monitor; whether used as an interesting visual toy or as a cheapo subsititute for a spectrum analyzer,, you'll be glad you put one together. P.S. If you'd like to see someone offer this circuit as a kit of parts, or perhaps just offer the circuit board, tell Polyphony about it. If there are enough responses, I'll start to work putting a board lavout together. - © 1979 by Craig Anderton. # **ELECTRONIC KEYBOARDS** FOR HOME ORGANS AND SYNTHESIZERS SEND FOR FREE BROCHURE. | | Co., Ivoryton, Conne
ee Electronic Keyboa | | |---------------|--|-----| | Name | | | | Street Addres | S | | | City | State | Zip | ### PROGRAMMABLE DRUM SET features: score editing, bridges, intro's, external sync to sequencers or foot controls, memory save switch & much more. Enter scores in seconds - NO PROGRAMMING KNOWLEDGE IS REQUIRED! High Fidelity describes the kit as "an easy project. fun to do and yields delightful results...an excellent educational tool and versatile aid to the musician who can't afford a live rhythm section." Programmable Drum Set Kit . . . \$84.95 -Also available fully assembled ..\$149.95 -rom: (plus \$3 shipping) from | | EDMA ELECTRONICS 1020 W. WILSHIRE _ OKLAHOMA CITY, OK 73116 | |---|---| | i | () Send Programmable Drum Set Kit \$84, 95 | | į | plus \$3 shipping enclosed. | | i | () Send Fully Assembled Programmable Drum | | | Set\$149.95 plus \$3 shipping enclosed. | () Send FREE catalog name: address:_ _ state: _ EDAG ELECTRONICS , DEPT 2 y ,1020 W. WILSHIRE OKLAHOMA CITY. OK 73116 George Russell (b. 1923), composer-pianist-theorist, is perhaps known for his work in the field of jazz. His book, The Lydian Chromatic Concept of Tonal Organization (1953), has exerted profound influence on jazz musicians for the past two decades. In 1969 Russell received both National а Endowment of the Arts grant and a Guggenheim Fellowship, enabling him to spend some time Scandinavia to teach, to perform, and to compose for radio and television. During this period he produced some electronic compositions that display a refined approach concerning the treatment and mixing of sounds, as well as the combination of prerecorded 'tape with jazz ensemble. Russell is presently teaching at the New England Conservatory of Music in Boston. The "Electronic Organ Sonata No. 1" (1968) is Russell's first electronic work, whereby he taped an improvisation on a church organ in Oslo, Norway. This organ tape was then manipulated and transformed at the electronic studio of Radio Sweden in Stockholm, and the result is a musique concrete composition for solo tape. Although obvious iazz elements rarely appear, e.g., a few 'blues' note patterns, the improvisational character of this piece clearly reflects Russell's affinity with the jazz medium. His compositional aesthetic in the "Organ Sonata" is similar to that of Ilhan Mimaroglu in his "Piano Music for Performer and Composer" (1966-67).compositions were realized from electro - mechanical transformations of prerecorded tapes of improvised keyboard music, and both are solo tape pieces. Russell, however, did not splice and cut-up the organ sounds to the extent that Mimaroglu did with the piano material. For Russell, splicing was used primarily for Therefore, the original organ sonority is always present and never destroyed by extensive tape modifications as in parts of Mimaroglu's piece. Russell treats the unmodified organ timbre as the principal voice, and this is usually louder than any accompanying modified organ material. The result is not unlike that of a piece for organ and tape. Before we consider the electronic modifications that Russell applied to the organ tape, we should first mention the inherent timbral resources of the organ. These include a wide range of predetermined timbres (referred to as 'registration' by organists) that may be used either individually or in combination. The resultant effect is analogous to filtering, providing Russell with a variety of preselected organ sonorities. In addition to the many available organ registrations Russell also employs tape transposition, delay, and reversal, along with filtering, ring-, and amplitude modulation. The modulation signals are often subaudio frequencies, and all modulated material undergoes extensive filtering---especially high-pass. Sometimes white noise is mixed with the filtered sounds to create thicker textures, but the original organ timbre usually remains in the foreground. Among the most outstanding features of the "Organ Sonata" is its clear presentation and articulation, since large chordal masses (reminiscent of the orchestral music of Ligeti and Penderecki) permeate the entire. Frequent overdubs work. contribute significantly to a rather complex texture, but Russell successfully avoids timbral and textural ambiguity by application discrete of modulation and filtering techniques to create subtle delineations. By working in this manner Russell was able to superpose melodic, harmonic, rhythmic, timbral, and textural elements in a polyphonic fashion. The following illustrations show how some of these procedures may be applied to a small synthesizer system. Figure 1 is a basic configuration that permits a prerecorded source tape (in this instance organ) to be mixed with a modulated-filtered version of itself. In the "Organ Sonata" generally mixes the Russell source tape at a higher amplitude level than that of the modified material. Figure 2 illustrates the inclusion of slight tape delay only to the modified sounds. Finally, figure demonstrates the addition of amplitude modulation via a low-frequency oscillator to the modified-delayed material. In each instance the resultant texture becomes more complex, but each level of complexity is accompanied by an additional modification to insure timbral and textural clarity. Like the "Electronic Organ Sonata", Russell's "Electronic Sonata for Souls Loved by Nature" (1969) was also realized at the electronic studio of Radio Sweden. The latter is for prerecorded tape and jazz sextet consisting of tenor sax, trumpet, electric guitar, piano, bass, and drums. It is divided into two parts, each with numerous subdivisions. As seen in the "Organ Sonata", Russell obtained a high degree of timbral unity by restricting the sound source to the organ. All sounds were derived from this sole source to generate a rather limited sonorous environment. Although this form of timbral unity is still present in "Souls Loved by Nature", Russell extends the concept to include stylistic unity. He refers to the prerecorded tape as "pan-stylistic"---made up of different tapes of music electronically modified. tape serves as a background for the jazz ensemble, which also plays in a pan-stylistic fashion. Russell's compositional aesthetic here parallels that of Karlheinz Stockhausen as found in "Telemusik" (1966) and "Hymnen" (1967). Both composers are striving toward a form of music that is not restricted to any one culture, but rather a universal music. The tape for Part I of the "Electronic Sonata for Souls Loved by Nature" is characterized by slowly evolving textures like those prevalent in the tape pieces of Pierre Henry ("Le Voyage") and Iannis Xenakis ("Bohor I"). Russell's tape is continuous, and it is composed of electronic instrumental sources. Sustained chordal textures are enhanced via tape reversal and transposition, much overdubbing, ring modulation of melodic material, and ring modulation to produce metallic Since one of the sounds. functions of the tape is to provide an accompaniment for the instruments, Russell utilizes both extreme high and frequencies to complement the instrumental registers. Another function of the tape is to serve as a transition between the subdivisions of Part defining the overall structural framework of this composition. Figure 4
depicts the relation between tape and jazz ensemble, wherein sections are delineated by various instrumental combinations playing in conjunction with a continuous tape. Sectional distinctions are enhanced by the pan-stylistic performance of the jazz sextet. Conversely, these distinctions are frequently blurred because of soft instrumental entrances that blend with the tape to the extent that timbral and textural changes are not immediately perceptible. Part II of "Souls Loved by Nature" displays more sectional contrasts than did the first part due to the inclusion of more ring modulated instrumental sounds (on tape), and increased rhythmic variety. In addition, the beginning of the tape contains African men speaking and chanting, and since this texture appears only once strong sectional divisions arise. Finally, the tape of Part II is not as continuous as that of Part I so that sectional contrasts are even more apparent. continued on page 28 # INDUSTRY NOTES Tell them you saw it in POLIPHONY # **VERSATILE RHYTHM** RolandCorp US has introduced two unique computer rhythm units provide which accent to variation overcome t.he mechanical rhythm machine feel common to most electronic drummers. The CR-68 and CR-78 models' unique feature accentuates and syncopates different voices to add real feeling to the rhythms. The units also contain an automatic/manual variation mode or "fill" which automatically provides one of 11 rhythm variations to occur every 2, 4, 8, 12, or 16 measures. In a manual format, these fills enter the beat only when triggered by a footswitch or panel button. Rhythms provided include 20 selections, such as two seperate disco beats and many variations. Volume and brilliance controls allow modification of final drum mix, with capacilities to add and delete some instruments for further variation. The innovative CR-78 also includes a programmer which allows the musician pre-program four rhythm tracks of up to 11 instruments each by selecting the memory and voice and then tapping its part out on a special programming pad. The features the additional voice mixing capabilities as well as a fade in/out device. Both units provide sync connections for use in conjunction with synthesizers, sequencers, other automated devices. The CR-78 has a suggested list of \$795 and the CR-68 is \$495. For more information RolandCorp US. 2401 Saybrook Ave., Los Angeles, CA 90040, phone (213) 685-5141. # **JOB OPENINGS** Sequential Circuits (1172G Aster Ave., Sunnyvale, CA 94086, 408-296-3116) is looking for technicians to work on Prophet synthesizers. If you have background of electronics, and microprocessors (especially the Z-80), it would be well worth your time to contact Dave Smith. For more information see the ad in Equipment Exchange. # SUMMER CLASSES The New England Conservatory Music will hold a Summer Session from June 25 through 3, 1979 featuring workshops, courses, and master classes. Among the numerous offerings of special interest is Electronic Music Workshop with Robert Ceely, June 25 - 29. The workshop will be divided two sessions . Mornings will lectures include and demonstrations of the hardware and software of electronic music. and discussions of how and why synthesizers work, and the theory behind their sounds. afternoon sessions will allow students to get hands-on experience with the Arp. Moog, Buchla, and EML synthesizers. Studio technique covering multi channel recording, recording with overdubbing, advanced sequencing techniques, and unusual patch configurations will also be explored demonstrated For more information, contact Robert L. Annis. Director of Summer School, New England of Music. Conservatory Huntington Ave., Boston, 02115, (617) 262-1120 extension # **LIVE McLEAN** "The McLean Mix" (Barton and Priscilla McLean) mentioned in the Composer Profiles column last issue are making a number of live performances which you may wish catch: North Texas State University- April 19. University of Illinois at Urbana- April 23, Indiana University at South Bend-April 25, University of Akron-April 27, Columbia University in New York- May 2, The Kitchen in NYC- early May, and the National Gallery of Art in Washington, DC-May 6. # SYNTHESIS WORKSHOP Again this summer there will be an electronic music workshop at Fort Lewis College, Durango, Colorado from June 11 through 22. Three labs will be presented. each with different sets of synthesizer gear. information was available press time. For more information Carroll Carruth Arizona Western College, PO Box 85364, 929, Yuma, ΑZ phone 726-1000. # **NEW MODULES, NEW SYSTEMS** Aries Music Keyboard System III is a modular keyboard-controlled synthesizer featuring normal pre-patching that can easily be overridden when other patches are desired use in live performance. Designed for playing lead lines, the synthesizer also provides a "natural filter patch" that adds realistic quality to the timbre, with brightness controlled by a foot pedal. Other capabilities of the system include low pass and multi-mode VCFs, VC phasing, VC stereo panning, stereo reverb, 5 octave keyboard, pre-amp and envelope follower, balanced modulator, 3 audio VCOs. This and other new Aries systems feature the latest Series III modules which incorporate electronic music integrated for easy circuits assembly. Features of the new modules voltage controlled include envelope generator parameters, phase locked sync on the VCOs, two modes of pulse width modulation, VCQ and notch/peak response switch on the multi-mode filter, and much more. The Aries System III is priced at \$2625 in kit form, and \$3460 wired. A new catalog is available which describes the new modules and systems by contacting: Aries Music, Inc., PO Box 3065, Shetland Industrial Park, Salem, MA 01970, phone (617) 744-2400. # **CREATIVE RECORDERS** TEAC is introducing a new four channel open reel deck with Simul-Sync to succeed its famous 3340 series which is being put to rest this year. The new A-3440 is a three head, three motor, two speed (7.5 and 15ips) system which features all new transport design, and new circuitry and logic systems. In the new 3440, the Simul-Sync is tied directly to the 'Function Select' switch for each channel either for recording or overdubbing. Rather than having Record Mode switches, Sync select switches, and Monitor select switches which must be enabled for each channel, the new Function Select switches route and select all the appropriate signal paths automatically. Other features include a manual cue lever for fast search, cueing and editing, four VU meters, mic/ line input selectors, four front panel mic inputs, and independent output level controls for each channel. Also included is a headphone monitor mixdown section which allows you to hear your material mixed with variable output level. Optional pro curve dbx is available, as is remote control. The A-3440 has specs which include .04% wow and flutter, 65 db S/N ratio, and 35 to 22K Hz frequency response at 15 ips. The suggested retail price is \$1500. The model 124 Syncaset is a special purpose cassette recorder which features Teac's Simul-Sync for increased user flexibility in multi-track recording. Features include a DC servo motor, Dolby noise reduction, memory rewind, bias and EQ switches, and a unique cross feed switch which allows blending of the layered recording for playback. Specs include wow and flutter of .07%. frequency response of 30 to 16KHz, S/N of 55dB without Dolby. For the amateur recordist who doesn't want to jump all the way to a 4 track recorder, this looks like a good place to start. The 124 will be available in April at a suggested retail of \$449. For more information either of these recorders contact TEAC Corporation of America, 7733 Telegraph Rd., Montebello, CA 90640, phone (213) 726-0303. # SUPER EO The Spectra Sound 1000B graphic equalizer incorporates the latest bi-fet circuits to provide wide bandwidth (20 to 20KHz + .5dB), low noise (-100dBm), slew high (13 volts/microsecond), and low distortion (IM and THD less than .008%). LED overload indicators are provided for each channel as well as output level controls. Active balanced inputs and outputs with line drivers are available. For , more information contact Spectra Sound Products. Inc., 2245 South West Temple. Salt Lake City, UT 84115. # MUSIC ICs A kit for a complete synthesizer voice, based on six custom SSM electronic music ICs, is available to experimenters from E-mu Systems (417 Broadway, continued on page 36 # POLIPHONIA. BOOKPAGE is provided to help Polyphony readers find the special publications their projects require. The items we currently stock are a <u>must</u> for every active music experimenter's lab or studio bookshelf. We are looking for additional items which may interest you. Let us know of books (and publisher, if you know it), records, tapes, or anything else which would be useful to you or others. Circuit boards for Polyphony projects? Patch chart pads? Some specialized electornic supplies? TO ORDER: Use the convenient fold-up in the center of this issue or, if someone beat you to it, the order form at the bottom of the next page. We cannot invoice; payment must be included with any orders. As a bonus, we pay postage on shipments within the U.S.. Foreign customers must enclose \$1.00 per item to help defray additional costs. ALL foreign orders MUST be paid in U.S. FUNDS, preferably drawn on a U.S. bank. Better yet, send certified check or money order. Craig has prepared two fine books to serve as continuous reference manuals in building, and using musical electronics. Electronic Projects for Musicians is a perfect introductory manual for the musician with no previous experience in electronics. Home Recording for Musicians outlines the selection and operation of recording equipment for the musician with BIG ideas and small budgets. The Craig Anderton Music Tape is a collection of original compositions recorded by Craig while he was
writing HRFM. | #EPFM | | \$7.95 | |--|-----|--------| | #HRFM | | \$9.95 | | #CAMT | | \$5,95 | | Order CAMT with either book and deduct \$1 | 001 | | Howard Sams' cook books are an excellent way to stock your library with materials that are not only heavy on theory, definitions, and educational material, but chock full of practical applications as well! These books can easily replace stacks of manufacturers data sheets and applications notes all in an easy to use reference. "Audio IC Op Amp Applications' is a smaller version of the Op Amp Cookbook. This edition contains only the sections which are pertinent to audio circuitry. | #OACB Op-Amp Cookbook | \$12.95 | |------------------------------|---------| | #AFCB Active Filter Cookbook | \$14.95 | | #CMCB CMOS Cookbook | \$10.50 | | #AUOA Audio Op-Amp | \$ 7.95 | Jack Darr's Electric Guitar Amplifier Handbook is stuffed with schematics for popular amplifiers and effects units from major manufacturers. This book is an aid to service shops as well as the advanced experimenter. Contains thorough discussions of typical amplifier problems, locating them, and repairing them. #EGAH \$10.50 Audio Cyclopedia is subtitled "the most comprehensive and authoritative reference volume on audio ever published". With 1760 pages, 3650 entries, and hundreds of illustrations and schematics, that description can't be too far off. #CYCLO Audio Cyclopedia \$39.95 The Source is finally here! Over 125 pages of patches, synthesizer notation, and computer software for music applications. Regardless of the synthesizer you own, these patches serve as an intense study of the capabilities of synthesizers. As an inspirational guide or departure point for deriving your own patches, The Source can't be beat! Convenient thumb index leads you to the patch you're after! Tonal patches, sound effects, patch techniques — it's all here! #Source \$4,00 We have new binders to hold the large format Polyphony -- or any other 8.5" X 11" publication. Black vinyl over hardboard is silkscreened with the Polyphony logo and a spot to index the contents. Wire-type magazine holder eliminates punching your magazines for ring binders, and keeps issues like new for reference use. #Bind-L **\$4.95** ALSO: We have a few of our old style magazine binders left. These were designed for our 5.5" X 8.5" issues, but will serve well to hold other small publications, such as manuals from Paia, Strider, or old copies of Musicians Guide, etc. 1/2 price while they last! #Bind-S \$2.50 the most comprehensive and authoritative reference volume on audio ever published sovers phase of the behavior Order by issue cover date \$2,00 each The wide variety of practical applications and construction projects in past issues make a binder full of Polyphonys a frequently used reference to keep near your synthesizer or workbench. All Polyphony back issues are still available; there was one issue in '75, four in '76, two in '77, and five in '78. For a more complete rundown on the features in each issue, send us a SASE and request our 'back issue list'. ORDER BLANK NAME: ________ POUPHONY Bookpage ADDRESS: _______ SEND TO: PO BOX 20305 CITY: _____ STATE: ___ ZIP: _____ Oklahoma City, OK 73156 QUANTITY _____ ITEM _____ PRICE _______ \$ ______ \$ Foreign Postage (\$1°° per item)\$ ______ TOTAL \$ ______ TOTAL \$ If you built the simple VCA from last time, you may have found some alignment problems. More than likely you found that it didn't get a gain of one. That is, for a one-half volt input signal and a control of 5 volts, you didn't get a one-half volt output signal. You also probably found that the unit popped as the control voltage was changed quickly. If anything, this may be the most aggravating problem of all. Fortunately, it is also quite easy to get rid of. In the updated schematic of figure 1, note the addition of the 100K trim pot and the 100K resistor to pin 2 of the 3080. The two ends of the trimmer are tied to the two supply voltages respectively. This trim control is used the same as all the others. While entering a quickly changing control voltage, monitor the output of the module with a scope and/or by ear. Adjust the control for minimum audible pop. The lack (or excess) of gain is an easily cured problem, too. Since the gain of a 3080 circuit is dependant on the resistor marked Rgain, it is a simple matter to make this resistor variable. While we're here, lets also look at some other refinements on this circuit. There is no lower limit on the frequency response of this circuit, providing that we do not voltage controlled rate and depth! The 'super VCA' schematic is shown in figure 2. When we try to apply all of these requirements into one module, we definitely come up with a multipurpose VCA. It is capable of accepting both audio and control voltages, converting audio to control voltages, and in special cases letting you use certain control signals as audio! Just a few notes on this circuit: 1) We haven't discussed suitable control voltage summers, but we will. Read ahead, select the appropriate summer, then proceed to the following calibration procedures. .47uf 2) The three capacitors are there to keep DC out of the audio line. For some types of equipment, these may be enlarged or left out entirely. Leaving them out will improve the low end of the system (GREATLY) but will leave you susceptible to use any coupling capacitors. This being the case, we can conceivably voltage control the amplitude of control voltages. This would allow for delayed or time-varying vibrato, 'echo' envelopes, and possibly chromatic sequencer effects. If we make the gain of this circuit greater than one, say to ten, then we could use our audio oscillators as control voltage sources, giving us vibrato with DC offsets if you use outside sources. 3) Notice that there are TWO AC inputs labeled + and -. This is a true differential amplifier. The audio signal may be inverted or not. This can make for some special effects with filters, phase shifters, and flangers. So there you have a super VCA. # CONTROL SUMMERS let's get some IABC sources. The first would most logically be a linear VC current source as shown in figure 3. This should be quite familiar to those of you with PAIA equipment. The only change is the MANUAL control This is front panel mounted, if you desire to use it. It will allow you to turn the VCA on without using a patchcord; handy when testing a patch or for a manual volume control. You've already seen the second current source; the single transistor setup is shown in figure 4. Basically, the same as the PAIA source, it simply lacks the accuracy of its counterpart. However, there's nothing wrong it in noncritical applications, and it's certainly cheap and small. The last current source is a radical change from what we've had so far. Both of the above have been LINEAR response sources. For more realistic percussion sounds, and a few other uses, we need an EXPONENTIAL current source. It has been stated many times that the ear is more sensitive to pitch than to volume, so we can get by with a little bit less precision in a VCA than in VCOs. The circuit in figure 5, although a true exponential converter, is not usually of sufficient accuracy to be used in a VCO. It probably can be aligned, but we won't bother with it here. Like all exponential converters, this one is touchy and difficult to align properly. However, in this use (a VCA) it really doesn't make too much difference, hence the noticeable lack of trim pots. It may be necessary to find suitable transistors by trial-and-error. This is the only place I've found that matched transistors could be an absolute necessity. Theoretically, the base-emitter voltage drops of the two transistors (about .6 volt) cancel since the two transistors are of opposite polarity. practice, I could not find transistors that EXACTLY cancelled. For this reason, in the exponential mode, you may find some more or less small signal feed-through even when the VCA is off. You should select transistors to minimize this feed through. Put the transistors in sockets and plug in and out until you find a suitable pair. Incidentally, you should find no problems in the linear mode. As was stated, this circuit is touchy. Play with the values of two feedback resistors. Adjust the 82K for linear response and the 300 ohm (don't bother the 2.2K unless necessary) for exponential response. Generally, get the linear response working, and adjust the exponential to match. # CALIBRATION The actual procedure differs somewhat depending on whether you want audio fidelity or control voltage fidelity. First, put in a measured 5-volt control source. If you want maximum audio gain, put in an audio source (oscillator) and adjust the GAIN trim pot for the same output as you have input, voltage-wise. If you wish greater DC accuracy, substitute a DC input voltage instead of the audio. With 5-volts control, adjust for unity gain. When using this VCA with DC voltage, it can be thought of as a voltage controlled potentiometer. If you think of it this way, you can do chromatic transposition (like with a sequencer or keyboard) by voltage control for systems with linear oscillators. Indeed, it is so but we may need a little more accuracy, yet. The inaccuracies stem from possible DC offset in the 301 op amp. For maximum DC accuracy, we will need to zero the 301--an easy job as you can see in figure 6. To adjust the offset, run an oscillator at some frequency, and plug in the output of the VCA. Adjust the zero control, and continue to plug and unplug the VCA until plugging it in produces no change in pitch--absolutely zero output. The 'pop' control will have some effect as well, The 'pop' control but if it is properly adjusted it should be unnoticable. continued on page 34 # NAME THAT TONE # - AGAIN! July/August 1978 the issue of Polyphony, Jerry Von Loh presented a feature article dealing with formulae
which could be used to convert specific frequencies into musical note names and vice versa. Polyphony recieved several responses to the original article with suggestions for streamlining the approach offered by the author. The first deals with modifying the equations for use with existing systems of notation numbering rather than "defining" another system. The second deals with using the equations on programmable calculators since there are (most likely) a number of notes or frequencies to be determined at one sitting. Since there seemed to be a good deal of interest in this article, we decided to publish the responses so everyone could benefit. As always, further comments are welcome. - M.J. # USING EXISTING NOTATION SYSTEMS Lucius Day Lakewood, CO Referring to "Name That Tone" in the July/August issue, I was disappointed that you let the author further cloud the notation problem by introducing another system of notation. The A to A octave system is out of line with your C to C octaves of "Fundamental Music Notation" (Polyphony issue 3/76) and out of step with the more common usage. For example, let's take C7 - Von Loh defines C7 as the top of the piano; Polyphony defines C8 as the top. This is bad. Furthermore, by using such a cumbersome system Von Loh has developed a most cumbersome and awkward set of equations. If he had considered the accepted notation of "key numbers" as used by piano tuners, his equations would have become much more elegant and simple. For example: let's define "n" as the "number" of the key on a standard 88 key piano such that n = 1 = the lowest A n = 88 = the highest C n = 49 = reference note A If F_n = the frequency of the $n^{\mbox{th}}$ note we can write $$F_n = K(2^{n/12})$$ where K is yet to be defined for n = 49 and for standard AFM 440 pitch as in $$F_{49} = K_{440}(2^{49/12}) = 440 \text{ Hz}$$ Final solution yields ### PIANO KEYBOARD CHART Mathematical notation (with traditional notation in parenthesis). Read left to right. Start A0(A1) A#0(A#2) B0(B3) C7(C76) C#7(C#77) D7(D78) D#7(D#79) E7(E80)F7(F81) F#7(F#82) G7(G83) G#7(G#84) A7(A85) A#7(A*86) B7(B87) C8(C88) = last note on right. THE PIANO TECHNICIAN'S JOURNAL · February, 1978 $$K_{440} = \frac{440}{2^{49/12}} = 25.956544$$ Therefor, in the 440 tuning system, the final equation for note and frequency conversion is $$F_n = (25.956544)2^{n/12}$$ but K can be immediately evaluated for \underline{any} reference note and any arbitrary pitch, such as $$A_{49} = 435 \text{ Hz}$$ or $C_{40} = 256 \text{ Hz}$ Note that there are no "octave numbers" with which you need to deal. And, of course, the equation can be solved for "n" for finding notes from frequencies: $$n = 12 \quad \frac{\log (F_n/k)}{\log 2}$$ This seems to me to be a lot more straightforward. We wish to thank The Piano Technicians Journal (PO Box 1813, Seattle, WA 98111) for letting us reprint the piano keyboard chart from their February 1978 issue. # NOTE/FREQUENCY CONVERSIONS ON ### PROGRAMMABLE CALCULATORS Terry Fitzpatrick now, all vou techno-freaks have had a chance to try Jerry Von Loh's formulae for converting frequencies to notes and octaves, or vice versa (Polyphony, July/August 1978). Great, huh? Did one time through the calculations answer all your questions? No? Bet your fingers got tired. How would you like to eliminate about 80% of these keystrokes while greatly reducing the chances for error? Well, for those of you with programmable calculators (who can afford not to have one at today's prices), here's a program incorporating Jerry's formulae. Using his "Note Equivalency Charts", enter the frequency, press a button, and see the octave number displayed. Press another button and get the note number. Or knowing the octave and note numbers, enter them and press | 000 46 060 00 | STEP # | CODE | COMMENTS | |---|------------|---|------------------------------| | 001 16 061 98
002 43 062 81 | 000 | LBL A' | This routine | | 003 01 | 005 | RCL 17
/ 27.5 | finds the octave number. | | 005 5 5 065 02 066 07 | 010 | = log
/ 2 log | | | 007 07 067 93 | 015 | = | | | 008 93 068 05 009 05 069 65 010 95 070 02 011 28 071 45 012 55 072 43 013 02 073 01 | 020
025 | INV D.MS INV D.MS fix 0 D.MS INV fix STO 19 prt HLT | INTeger
truncation. | | 014 28 | 030 | LBL B' | This routine | | 016 22 076 53 | | RCL 17 | finds the note | | 017 37 | 035
041 | / (27.5
X 2 | number to be used with the | | 019 37 079 01
020 57 080 02 | 048 | y ^X RCL 19
= log |) equivalency charts. | | 021 00 081 54 | 050 | /(2 y ^{1/x} | | | 022 37 | 054 | 12)
log = | | | 024 57 084 01
025 42 085 08 | 061 | fix 0
prt HLT | | | 026 01 086 95 | 063
065 | LBL D'
27.5 X | This routine finds the | | 027 09 | 070 | 2 | frequency to | | 029 81 | 075 | y^ RCL 19
X (2y ^{1/x}
12) | three decimal places. | | 031 17 | 082 | y ^x RCL 18
= fix 3 | 3 | | 033 01 | 089 | prt HLT | | | 035 55 | 091 | LBL A
STO 19
prt HLT | Stores entered octave number | | 038 07 098 46
039 93 099 12 | | | ry needed unless | | 040 05 100 42
041 65 101 01 | 098 | LBL B
STO 18 | Stores or | | 042 02 102 08
043 45 103 98 | | prt HLT | changes note number. | | 044 43 104 81 | 105 | LBL D | Stores | | 045 01 | | STO 17
prt HLT | entered
frequency. | | 047 54 107 42
048 95 108 01
049 28 109 07
050 55 110 98 | 112 | LBL E
CLR CMs
INV fix
HLT | Initializes system. | | 052 02 112 46
053 35 113 15 | Above | - Docume | ented Program | | 055 02 115 47
056 54 116 22 | Left - N | Machine C | Code Printout | | 057 28 117 57
058 95 118 81 | | | | | 050 50 110 01
050 57 110 00 | 1 1 | m 0.77 | - | more.... ..next page.. 059 57 119 00 # oving: tell us about it! When writing to change the address on your POLYPHONY subscription it is important that you enclose the mailing label, Our computer cannot locate your name on the subscription list without it. ATTACH OLD LABEL HERE # **NEW ADDRESS** | Name | | | | |----------|-------|-------|--| | Address_ | | | | | City | State | _Zin_ | | | | | P | | mail to: POLYPHONY PO BOX 20305 Oklahoma City, OK 73156 John Simonton's time -proven design provides two envelope generators VCA, VCO & VCF in a low cost, easy to use package. Use alone with its built-in ribbon controller or modify to use with guitar, electronic piano, polytonic keyboards, etc. The perfect introduction to electronic music and best of all, the Gnome is only \$59.95 in easy to assemble kit form. Is it | any wonder | why we've sola | tnousanas: | |------------|---------------------|----------------| | () GNOME | | stage)
IZER | | address: | | | | city: | state: | zip: | | | NC card no
PT. y | | # NAME THAT TONE from previous page button to obtain the frequency. The program was written for "antique" Texas Instruments with printer, but can easily be modified to run on other machines, including RPN types. since the coding is straightforward. Only three your memories are needed. If machine doesn't have enough program memory, try doing the storage data manually. Initialization can also be done manually, as can fix point formatting; also you can leave out the print codes. If your calculator has an integer truncation key (INT), that will also save a few steps. No attempt has been made to optimize the program since it is relatively short and already runs faster than you can write down the numbers. Let's run a few examples. Enter the program, press E. Calculate the frequency of B-flat 6? > Enter octave number (6). press A. Enter note number from equivalency chart (1), press Get frequency by pressing D', see "1864.655" displayed. What is the frequency of E6 ? Same octave number as last calculation. SO no entry required. Enter note number (7), press Get frequency by pressing D', see "2637.020" displayed. What note corresponds to a frequency of 60 Hz ? Enter frequency (60), press Get octave number by pressing A', see "1" displayed. Get note number by pressing B', see "2" displayed. Using the charts, 60 Hz = note B in the first octave. This program makes formulae a joy to use. For you digitizers, it should now be a simple thing to translate a score into frequencies. For the rest of all the good points in Jerry's article will However, for example #3 above, instead of 40 or more keystrokes, you will only need 7. That's about an 80% reduction in effort and a similar reduction in time and error opportunity. Polyphony As always, welcomes additional feedback from other readers who have comments about any of our articles. We enjoy doing these types of "reader rebuttal" articles. really helps keep the feeling communication. continued from page 15 These electronic works of George Russell reveal the question concerning the role of technological advances that all contemporary artists (not only musicians) answer. must Russell's compositional aesthetic, based upon his extensive use of conventional instruments and musique concrete techniques. is apparent when he says that "man, in the face of encroaching technology, must confront technology and attempt humanize it ... " ### DISCOGRAPHY "Electronic Organ Sonata No. 1". Flying Dutchman FDS-122; Sonet SLP-1409. "Electronic Sonata for Souls Loved by Nature". Flying Dutchman FDS-124; Sonet SLP-1411/ 1412; Strata-East SES-19761. ### BIBLOGRAPHY The Lydian Chromatic Concept of Tonal Organization. New York: Concept Publishing Co., 1953. W. WILSHIRE, OKLAHOMA CITY, OK 73116 A couple of issues ago, I said that we were going to look at a D/A that would allow those of you with exponential response synthesis equipment to begin playing with the computer software we have been discussing here. Then SEQUE ran longer than I thought it would, and we ran into logistics
problems and In any case, it's not ready yet. Next time for sure. Meantime, I've got some quickie code that I think you'll like, It's a program we call ECHO. I'll bet you think that ECHO echoes. It does. It works in conjunction with an allocation algorithm (POLY from MUS 1 in this case, though something like Bob Yannes' SHAZAM could also be patched in to use this) and "follows" whatever data is being produced from QuASH channel #1, delaying it for a controllable period of time before playing it from a second channel, delaying again before playing on a third channel, and so on. A convenient conceptual handle that may help you understand the "how-it-works" of ECHO might be a clock face. With only a second hand. The numbers around the clock face represent memory locations and the second hand represents a pointer to these memory locations which, as it sweeps past each number, writes whatever note happens to be coming out of QuASH channel #1. This is really a funny clock, though, because in addition to the single second hand it has many minute hands that rotate at the same rate as the second hand. If the second hand is a "writing pointer", these funny minute hands are "reading pointers". Within some restrictions that we'll discuss shortly, we can have as many reading pointers as we like; the important feature is that each of these fast minute hands correspond to an additional QuASH channel. Now as the clock runs, the writing pointer scans merrily through memory, writing the note that's in channel #1. In step behind it are the reading pointers, and as they point to successive memory locations they read them and place the result in the QuASH channel to which they correspond. Presto, echo. In computerese, this kind of procedure is called a queue. ECHO has a variety of software control features, and since I don't really know which of them are more important, we'll just plunge into the middle. While ECHO always pulls the note that it's going to echo from channel #1, the first channel that the echo effect appears on doesn't have to be channel #2. Why? So that some channels can be set aside for polyphonic work while others are producing the echo. Here's how. One piece of data that every polyphonic allocation subroutine must have is the number of output channels available for its use. POLY established the precedential name OUTS for this datum and set its location in a Paia 8700 as \$EA. Previously, we've always set this variable to represent the number of QuASH channels that were hardware supported. In a system which had a single QuASH, OUTS was set to contain \$04 so that all available outputs were used for polyphonic allocation. But OUTS may be set equal (may I please start saying "equal" instead of "contains"? It's not strictly true, but much less cumbersome.) to a number less than the number of hardware supported channels and the result will be to reserve some channels. In a system with two QuASH (for example) OUTS could be set equal to \$05 and the result would be that the upper 3 channels (6 - 8) will not have keyboard activations directly assigned to them. POLY (or whatever) doesn't know they're there. So we can use them for other things. Like echo channels. ECHO, in its turn, must know how many channels it has to work with. The location labeled ECCO (\$BB) serves this function, and in most cases will be set equal to the number of remaining channels. To give a final example; if we make OUTS equal to \$03 and ECCO equal to \$05, we've produced a system which has 3 polyphonic channels (the first three) with channels 4 through 8 echoing, in sequence, the notes that appear on polyphonic channel #1. I would be less than candid if I didn't forewarn you that successful use of a system which combines both polyphonic and echo channels requires a thorough understanding of the allocation algorithm being used as well as a certain manual and mental dexterity. It's best to start playing with a configuration which has only one channel available to POLY and the remainder used as echo channels. With practice, you can progress from there. # DELAY CONTROLS As you certainly know by now, all timing in our system references back to the scan rate of the keyboard, and ECHO has associated with it a variable labeled EDLY (\$BC) which regulates how fast (in terms of keyboard scans) the hands in our clock analogy (the reading and writing pointers) advance from one memory location to the next, which in turn contributes to how long the echo delay is. If we set EDLY equal to \$01, the echoing routine is invoked after every keyboard scan (which is variable, but typically will be every 10 to 50 milliseconds). Making EDLY equal to \$02 means that the routine is used on alternate scans which, if everything else is equal, will produce an echo delay twice as long. Notice that this affects only the ECHO and does nothing to alter POLY's allocating channels after every keyboard scan. This is important because when changing the value of EDLY you should be aware that if you skip more than about 8 scans before invoking ECHO, it may miss some keyboard activity in a fast riff. The notes will still play through the polyphonic channels, but won't be echoed. A second variable also interacts with EDLY to detirmine the echo delay. OFST (\$BD) controls the offset between the pointers into the echo queue. Going back to the clock metaphore, it detirmines how "far apart" the hands on the clock are. The farther apart they are (the bigger the number in OFST), the greater will be the echo delay. Like EDLY, there are some caveats that go with OFST. The echo buffer (queue) area of memory is 64 bytes on page 1. You don't want to come up with too many pointers (controlled by ECCO, remember) that are too far apart or they will represent a memory area larger than that set aside. The result of that is far from disastrous, but it will cause things like the high order channels echoing much sooner than you expected, as the reading pointers for those channels "wrap around" past the writing pointer. But, as we've decided here in the past, the difference between noise and a neat effect is often nothing more than a creative mind. Control of the time delay involved in the echo is important for reasons that you might not first think about, because like any device (or now software) that messes with the subjective flow of time, echo offers a variety of totally different effects depending on how long a time we are talking about. For example, if the delay is very short, as when both EDLY and OFST are set to \$01, the effect will not even be percieved as an echo, but rather as a "thickening" of the voice (voice doubling, actually). It's a lot like phasing or flanging, except that with those techniques the predominant effect is frequently that the subjective flow of time is cyclicly changing. Longer delays (EDLY = \$01 and OFST = \$08) produce the types of effects which give ECHO its name. Echoplex type echoing. There is a major difference, though, in that with conventional echo devices you can only echo in a voice that is essentially the same as the starting voice. Here, the echoes can be anything, and there's no way to appreciate the power that this implies without working with it. When the delays get very long (EDLY = \$02 and OFST = \$10) you find yourself playing with an instrument that allows you to play rounds with yourself. Also, of course, in different voices. Because the character of the instrument is so greatly influenced by delay times, and because the different characters can so frequently be used in the same musical performance, we've added a means of quickly switching from one set of operating parameters to another. Four of these presets are provided by pads 0-3 on the command keyboard. Touching one of these pads causes ECHO to get the requested set of parameters from a table that lives in memory \$9A = \$A9 and place them in the locations referenced by the rest of the program. The pre-sets that are in place in the listing which follows are: | COMMAND
KEY | POLY
CHANS | ECHO
CHANS | | DELAY
SCNS) | |----------------|---------------|---------------|----|----------------| | 0 | 1 | 7 | 1 | | | 1 | 1 | 7 | 8 | | | 2 | 1 | 3 | 16 | | | 3 | 1 | 3 | 32 | | Notice a couple of things here. First, if you're using a system with only a single QuASH (a P4700/J or its equivalent) it doesn't matter that there are more echo channels than there are hardware channels; the last four iterations simply won't have the hardware to voice them. Secondly, observe that when we got to longer delays we cut back on the number of echo channels so as to circumvent the "too many channels too far apart" problem that we looked at earlier. You can substitute your own presets for those shown simply by altering or replacing the values shown. Here is a map of locations that will make that a little easier: | | PRESET # | | | | | |------|----------|------|------|------|--| | | 0 | 1 | 2 | 3 | | | OUTS | \$9A | \$9E | \$A2 | \$A6 | | | ECCO | \$9B | \$9F | \$A3 | \$A7 | | | EDLY | \$9C | \$A0 | \$A4 | \$A8 | | | OFST | \$9D | \$A1 | \$A5 | \$A9 | | With some experimentation you will find echo presets which seem to complement each other particularly well. You will inevitably get to where you use a specific set of presets for each particular song, not only changing presets throughout the song but within a riff or phrase. This can create some neat effects such as having an initially long delay set and, in the middle of the echo chain, hit a faster preset to initiate a burst of echces. Or, have one preset for the "voice doubling" characteristics we discussed. Then you can switch between echoes for special effects and doubling for use on bass lines or solos. Actually, there is a lot of power hidden in this program that can be liberated with innovative patching, voicing, and mixing. How about having a chain of voices which are all related but slightly different, such as having higher Q on the filters as
the echo is passed on. Or changing envelope times so the first echoes have sharp attacks and delays and later voices have increasingly softer envelopes. Here's a good one- progressively detune each voice so you get a spiraling echo, or the echoes sequence upscale (or downscale). Completely different voices can be used, and this technique really works well on the long delays for doing rounds. Just playing with the mixing or panning of the normal echo voices can entertain you for hours. Have the echoes pan across the stereo field, or bounce back and forth. Or have the echoes begin to fade out, but set the last or next to last voice at a ``` 0950 RDJUST AS NECESSARY higher level. You can also use a multi- voice setup with only a few of the 88 ECHO BUFFER POINTER TO ACCUMULATOR LP1 TXA 0970 outputs driving voices. Set up the computer to provide (for PREPARE FOR ADDITTION 938- 18 0980 CLC example) one poly voice and seven echo voices, but only use 65 BD ADC *OFST CALCULATE NEXT LOCATION 0990 channels 1, 4, 5, and 8 to drive oscillators. Work with various C9 40 CMP 40 STILL WITHIN ECHO BUFFER? 03B- 1000 combinations here; each is a completely different rhythm and could 90 03 BCC SAVE YES, BRANCH TO CONTINUE 03D-- 1919 easily provide a rhythmic basis for a whole piece. 03F- NO, SET CARRY FOR SUBTRACTION 38 1020 SEC Well, by now you are probably ready to dig into the program, 040- E9 40 1030 SRC: 40 AND ADJUST POINTER so here is the listing. 042- ĤĤ 1040 SAVE TAX PUT POINTER IN PLACE As with other programs that we've examined in the past, ECHO may be hand-loaded using the 8700 computer's monitor, 1050 THEN PULL NOTES FROM ROTATED ECHO BUFFER LOCATIONS 1060 AND PLACE IN ECHO CHANNELS OF OUTPUT BUFFER (NTBL) 1070 but first set the monitor stack pointer: O-E-D-DISP-F-F-ENT 1080 GET NOTE FROM ECHO BUFFER and the user's stack pointer and status register: O-F-E-DISP-F-F-ENT-O-O-ENT 043- BD 00 02 1090 PLACE TO OUTPUT CHANNEL й46- 99 DØ ØØ 1100 STAINTBL, Y POINT TO NEXT OUTPUT CHANNEL 049- 88 1110 DEY and then load the program: 0-0-0-DISP-2-0-ENT-2-1-ENT-8-D-ENT- (etc.) C6 BA DEC: *TEMP 04A- 1120 ONE LESS ECHO CHANNEL and don't forget this data base information: 088- 20 21 0D 4C CO FF C9 090- D0 05 A0 5C 20 52 0D 098- 10 10 01 07 01 01 01 BUT SOME LEFT. LOOP 04C- DØ E9 1139 BNE LP1 1140 NOTES ARE PLAYED BY CALLING THE QUASH DRIVER (NOTE). 1159 FINALLY, ECHO OUTPUT CHANNELS ARE CLEARED SO AS NOT 1160 0A0- 01 08 01 03 02 08 1179 TO CONFUSE POLY WHEN CALLED 0A8- 02 10 1180 0B8_ FF 01 03 02 04 0E8- 20 04E- 20 2B 00 JSR NOTE CALL MUS1 QUASH DRIVERS, ETC. 40 0.1 After loading (and before running) the program and data should be dumped to tape (from location $000 to $0EC) using 051~ H4 FB 1200 LDY *OUTT GET FIRST ECHO CHANNEL POINTER 1210 LDX *ECCO GET # DE ECHO CHANNELS 053- A6 BB 855- 89 00 1229 LDA 00 PREPARE TO ZERO 0-0-0-0-0-0-E-C-0-1-D-D-TAPE ZERO ECHO OUTPUT CHANNEL 257- 99 00 00 1239 STA NTBL, Y When this tape is loaded in the future, it should be loaded from $000 to $0EC so that the presets will be loaded 1240 DEY POINT TO NEXT OUTPUT 858- 88 ONE LESS ECHO CHANNEL 1250 DEX along with the program. 05B- CA 1260 BNE LP2 SOME LEFT, LOOP 05C- D0 E9 1279 ************ READ COMMANDS 0-3; PRÉSETS, 4-INITIALIZE SYSTEM 128B 0020 5-CLEAR ECHO, 6-BREAK, 7-TUNE 1299 0030 ECHO 0.31 1300 MA40 JSR DECD READ COMMAND KEYBOARD 1310 05E- 20 00 0E 0050 POLYPHONIC VOICE QUEUING CMP 04 IS COMMAND A PRE-SET? C9 04 1320 Ø61- РР 1330 BPL NEXT NO, BRANCH FOR NEXT TEST 10 1B 063- 0070 RΨ 1340 JOHN SIMONTON 0080 THE COMMAND IS TO CALL UP A PRE-SET | AFTER CALUCLATING 1350 0090 THE BASE ADDRESS OF THE PRE-SETS CALLED FOR, THE PRESET 1360 :*(C) 1979 PAIA ELECTRONICS, INC+ 0100 1370 VALUES ARE TRANSFERED TO THEIR RESPECTIVE LOCATIONS ALL RIGHTS RESERVED AS ACTIVE PARAMETERS. NOTE THAT THE NUMBER OF CHANNELS ALLOCATED TO POLY USAGE (OUTS - $00EA) IS IN 1380 1390 ***************** 0130 1400 NON-CONTIGUOUS LOCATION AND MUST BE HANDLED SEPARATELY 9149 NOTE THAT THE CONTIGUOUS LOCATION *TEMP IS USED AS A 1419 0490 DUMMY VARIABLE AT THIS POINT 1420 0500 INITIALIZE SYSTEM, CLEAR OUTPUT BUFFERS AND ECHO BUFFER 1430 9519 1449 STU DISP SHOW PRESET 8C 20 08 20 21 00 STAR JSR IN11 CALL MUS1 INITIALIZATION 0520 ONE LESS THAN PRESETS BASE ADDRESS 968- A9 FF 1450 LDA REE 003- 005- A2 FF 9539 LDX REE PREPARE TO SET STACK POINTER PREPARE FOR CALCULATION LP3 CLC 969- 18 1469 98 9549 TXS SET STACK TO TOP OF PAGE THERE ARE 4 PRESET VARIABLES 06B- 69 04 1470 ADC 04 006- EBZR LDA 00 PREPARE TO ZERO OUT ECHO BUFFER A9 00 0550 POINT TO NEXT PRESET BASE 06D- 1480 DEY 998- 88 A2 3F 0560 LDX 3F POINTER TO END OF ECHO BUFFER 10 FA 1490 BPL LP3 IF NOT THIS PRESET, LOOP 96F- DON: 9D 99 02 STA EBUF, X ZERO ECHO BUFFER LOCATION 0570 1500 PUT POINTER CALCULATED TO X TRX 990- CA 0580 DEX POINT TO NEXT LOCATION คด คร 071- 1510 LDY 03 4 PRESETS, WILL COUNT TO -1 BPL ILP NOT DONE YET, LOOP 10 FA 0590 B5 9A LDA *PRST, X GET PRE-SET DATA 973- 1520 20 71 00 ECHO JSR POLY CALL MUS1 POLYPHONIC ALLOCATION 0600 075- 99 RA AA STA TEMP, Y 1530 :AND PLACE AS ACTIVE PARAMETER 0630 DETERMINE ADDRESS OF THE FIRST CHANNEL AVAILABLE 978- CA 1549 DEX POINT TO NEXT PRESET DATA 079- 0650 FOR ECHO USE 88 1550 DEV AND NEXT ACTIVE PARAMETER 10 F7 979- BPL LP4 STA *OUTS :IF NOT YET DONE, LOOP :SAYE THE MAYERICK PARAMETER 0660 1560 OFFSET TO FIRST OUT-BUF LOCATION 85 EA LDY RE 97C- 1570 013- A0 0F 0670 LDX *OUTS NUMBER OF POLYPHONIC CHANNELS 97F- 30 90 1580 BMI ECHO BRANCH ALWAYS 0680 015- A6 EA 017- POINT TO NEXT OUTPUT CHANNEL 0690 LP0 DEY 1590 918- CA ONE LESS POLY CHANNEL F0 7E 1600 NEXT BEQ STAR COMMAND IS FOR CLEAR, BRANCH 080- ALL POLY CHANS NOT USED, LOOP 1610 CMP 06 IS COMMAND 5 (CLEAR ECHO) OR 6 (BRK)? 019- DØ FC 0710 BNE LP0 082- C9 06 COMMAND IS CLEAR ECHO, BRANCH 018- 84 EB 0720 STY *OUTT SAVE FIRST ECHO POINTER FOR LATER 984- 30 80 1620 BMI EBZR 0730 1630 RNE NYTO COMMAND IS NOT BRK, BRANCH 0740 : ADVANCE ECHO BUFFER POINTER AND ADJUST IF NECESSARY 888- 20 21 00 1649 JSR INIT SHUT DOWN SYNTHESIZER 9759 BRR- 4C CO FF 1650 IMP BRAK AND RETURN TO MONITOR NXTO CMP 07 IS COMMAND TUNE? 9769 LDX *EPNT GET CURRENT ECHO BUFFER POINTER C9 07 1660 R1D- A6 RE 08F- 1670 A1F- C6 EC 9779 DEC *CNTR DECREMENT TIMER 090- DØ 05 BNE BRDG A BRANCH TOO FAR 021- DØ 09 0780 BNE GEYN TIME NOT UP, BRANCH N92- RØ 50 1680 LDY 50 PREPARE TO TUNE TO MIDDLE C 1690 0790 LDA *EDLY TIME UP, RE-INIT TIMER VALUE 20 52 0D JSR FILL SEE MUS 1.0 DOCUMENTATION 023- A5 BC 025- 85 EC 0800 STR *CNTR RE-INITIALIZE TIMER 097- 4C 10 10 1700 BRDG JMP ECHO :PLAY ON AND ON AND ON 1710 027- 0810 DEX POINT TO NEXT SET-UP VARIABLES FOR MUS1 828- 10 02 9829 BPL GETN BRANCH IF STILL WITHIN BUFFER AREA OTHERWISE, RE-INIT POINTER 1720 1730 OR 108A INITIAL PRE-SET R2R- A2 3F 0830 LDX RE 86 BE 1740 HS 01030204 0840 GETN STX *FPNT SAVE NEW POINTER SYSTEM CONTROL AND QUASH DELAY 1750 OR 10E8 B50 PUT CURRENT CHANNEL 1 NOTE IN ECHO BUFFER AND 1760 HS 402001 AND OUTS 0860 1770 AND PRESETS PREPARE ECHO CHANNEL COUNTER 0870 1780 OR 109A 9889 1799 HS 01070101 0890 LDB *CHN1 GET CHANNEL 1 NOTE R5 DF HS 01070108 SAVE IN ECHO BUFFER 1800 030- 9D 00 02 0900 STA EBUF, X 033- A5 BB 0910 LDR *ECCO GET NUMBER OF ECHO CHANNELS 1810 HS 01030208 HS 01030210 1820 0920 STR *TEMP :SAVE AS COUNTER 035- 85 BA 1830 N93N CRLCULATE SUCCESSIVE ECHO BUFFER LOCATIONS AND END EN 0940 ``` POLYPHONY # add to your: VOICE F to V CONVERTER ### BY: JOHN BLACET the last issue In of Polyphony, we covered the construction of a F/V converter for voice application. In this article we will add a circuit that allows amplitude to voltage conversion from the same microphone. We will also look at a control voltage processor that has four touch switch controlled channels, with a control voltage attenuator for each. With these added features, the unit becomes a complete voice to control voltage processor. It is capable of a wide variety of uses on a synthesizer or with voltage controlled effects. ## THE CIRCUITRY The amplitude to voltage converter, shown in Fig.1, is simply an envelope follower. This consists of a two op amp full wave rectifier and a low filter. This can be connected directly to the output of the mike preamp discussed in the previous article. You may wish to adjust R1 (filter time constant) or R2 (gain) for optimum results in application. The outputs of the two types of conversion (F/V and A/V) could lie in the same area, or the amplitude functional range could occur before the frequency function's. Controlling R2 gives you this option. Construction is pretty straightforward. The op amp is not critical. The 4136 is a quad 741 type. Power supplies can range from ±9 to ±15 volts. Bypassing is assumed. The control voltage processor, shown in Fig.2, has four channels, each identical. The control voltage level is adjusted with the 100K pot and selected via the analog switch section and its associated touch switch. The op amp section buffers the output. The touch switch is a simple set-reset latch or flip-flop that has its inputs held high with 10M resistors. When either touch switch gap is bridged by a finger, that input goes low and latches. The output goes high when the on switch is touched and visa-versa. The LED indicates the status of the channel. This is a handy circuit. It would be easy to replace the analog switches with ordinary toggles and save space, but touch board switches are fun--and fast enough to be played! The construction of the touch switch itself is easily accomplished on a PC board. The touch plates should be about 1/4-1/2" across with as narrow a gap as possible. Position the "ON" switch above the "OFF" in the manner of regular switches. Leave enough room between switches so that the finger will not overlap. Run the inputs up the board and the ground line along the bottom. After etching, solder plate each pad with a soldering iron. Using fine sand paper or steel wool, polish the solder bumps until they are relatively even. Then paint the PC board with an opaque
color everywhere except the actual touch pads and the in-out connector area. This procedure produces optimum results. However, much cruder arrangements will work. ## MODIFICATIONS There are no particular limits as to the number of channels you can connect to one control voltage source. In this particular case, two pair are used--one pair for the "frequency to voltage" output and another for the "amplitude to voltage" output. This control voltage processor can be used for other applications. The voltages for the 4066 analog switch must cover the input voltage range, however, and the total must not exceed 15 volts. This can be +7.5 volts, or +15volts to ground, or any other combination. Since the 4066 uses very little current, simple resistive dividers in the 10K ohm range can supply the proper voltages from the main supply. For use as an audio mixer with touch switching, leave the pot inputs seperate and place a Fig. 1 FWR and filter for amplitude to voltage conversion. capacitor on each input. Use a single op amp summing section with 100K input and feedback resistors in place of the four voltage followers. # THE APPLICATIONS The patches show two types of uses for the Voice to Control Voltage Processor. In Fig.3 a drum sound is changed in pitch and held until the next input. This is a nice way to change a percussive background you may be playing along with. In Fig. 4 both sections of the processor are used, one for This is a very each modifier. general patch with practically any instrument at the input and any two or more voltage controlled modifiers. With a little practice, you can keep the "frequency to voltage" controlled modifier static (by maintaining a steady pitch) and move the "amplitude to voltage" controlled modifier. With both voltages varying, a nice subtle control can be added to your instrument. The touch controls allow quick switching of modifiers in and out of the system. Many other patches for this module will become apparent as you use it in your system. Jean Michel Jarre's new album, EQUINOXE, (Polydor PD-1-6175), has a novel sounding effect about half way through band 4. This sounds suspiciously like the analyzer outputs of a vocoder controlling VCOs and VCFs. It is not so much a vocal sound as a vocally derived one. Our goal at the start was to add some control flexibility to the synthesizer. Now we have two parameters of the voice as controlling elements and this should be a significant step in Fig. 2 Control voltage processor. One-half shown, (Numbers in parenthesis are for the identical second half.) # * PETAJJIVUIT Introducing our unique new module kit, the PHASEFILTER. It falls into a new class of device — the timbre modulator or sound animator — whose main characteristic is to allow new and more subtle methods of waveform enhancement. ### It features: A 14 step, completely programmable, digital control voltage generator with glide. An LED bar graph control voltage display. Four different filter section arrangements. Exponential voltage control for a natural feel. External CV and trigger inputs. Two phaseshift and two lowpass filter sections. Super clean sound (80dB S/N, 0.1% distortion). These innovative features offer a lot of room for creativity and uncommon sound subtlety — for keyboard or any other amplified instrument. For a taste of the future of hybrid signal processing, write us today. * (Tint + Titillate) # BLACET MUSIC RESEARCH 18405 OLD MONTE RIO RD. GUERNEVILLE, CA. 95446 # SUPER VCA... continued from page 25 # WHY EXPONENTIALS Before I go, just a short WHY dissertation on exponential VCA. It is a known fact that the amplitude response of our ears is logarithmic, that is, we hear loudness in an exponential way. Without getting into decibels, LLs, and phons, let us say that for a sound to SEEM twice as loud it must have about 10 TIMES more nower (electrically). In practical use, let us design a patch. We have certain percussion sound that we wish to 'crescendo' to a climax, so we derive a patch as shown in figure 7. This will do the job, but it's somewhat wasteful of equipment. We can do the whole thing with the single exponential VCA depicted in figure 8. This is a pretty standard patch, but takes on new light when seen in the exponential mode. In this manner, the last two events will seem to increase in loudness by the same amount as the first two, something that can't be done in the linear mode. BIBLIOGRAPHY The Speech Chain; Peter Denes and Elliot Pinson; Anchor Press/Doubleday; New York, New York Introduction to the Physics and Psychophysics of Music; Juan Roederer; Springer-Verlag New York, Inc.; New York, New York # REVIEWS... continued from page 7 album should be interesting; if you are interested in guitar synthesis- even more so. This album is doing very well in Canada, and is just beginning distribution here, so it may be hard to find. If so, check out the ad which appears elsewhere in this issue for ordering information. ### THE MULTITRACK PRIMER The Multitrack Primer by Dick Rosmini Available at local Teac dealers for \$4.95, or directly from Polyphony Bookpage for the same price (postage included). "The Multitrack Primer" has been published by Teac primarilly as an introductory guide to those Teac customers who are just beginning the multitrack game. Naturally, most of the examples and wiring diagrams in the book use Teac devices as examples. But, nevertheless, there is a great deal of useful information in here for home recordists using any type of gear, and at most any degree of proficiency. The natural beginning is setting up the equipment, and room interconnections, layouts for various types of instrumentation. Following this, a basic course in technology is presented (dB, impedances, nanowebers, sync functions, and acoustics) to provide a firm foundation for the first experiments with the system. Quite a bit of space is devoted to preparing the home studio acoustically for best results with miked recordings. With quite a bit of detail, the author covers the techniques for building a 'room within a room' for maximum isolation and minimum coloration by the original room. He even provides construction alternatives for those of you who are renting and don't want to drill or nail your walls to death. Nice touch. Another large section is devoted to mikes. Techniques are discussed for measuring the polar response of microphones, and then how to use these response variations to your advantage when miking guitars, vocals, and drums. Many people getting started with recording seem to have lots of questions about miking technique. You've probably heard many people say that the best way to learn about miking technique is to start working with it and learn from experience. That's mostly true. but this book should at least provide a good introduction and foundation for the more advanced texts or experience. Overall, this is a good place to get the basics. There are a <u>lot</u> of diagrams and a lot of basic, easy-to-understand explanations of technical details. The primary area in which the book is lacking is continued from page 17 Cruz, CA 95060). The complete board contains 2 VCOs, 1 VCF, 2 VCAs, and 2 VC Transient E-mu, (Envelope) Generators. manufacturers of modular electronic music systems, have designed the board for hobbyists and also for OEMs interested in evaluating the ICs. The \$100 kit includes the 6 custom ICs (list price \$52.50), a 6" X 6 3/8" circuit board, 3 special temperature compensating resistors and 2 polystyrene capacitors. The VCF section can be wired to provide 24db per octave low pass or high pass functions, or an all pass filter for phase shifter effects. The user must obtain standard ICs, resistors. capacitors, and miscellaneous components. All inputs and outputs are wired to a pin .125" center edge connector (S-100 size, but not S-100 plug compatible). The board can be powered by + 15 volts @ 100 mA, or the on board power supply can be added to interface directly to 110 VAC. The kit, including documentation (schematics assembly diagrams, parts list, IC spec sheets) is available from E-mu Systems for \$100 postpaid. E-mu does not sell miscellaneous parts, but supplies the kit with all parts required for \$250, and a fully assembled and tested board for \$450. The documentation alone is \$2.00, the double sided board alone is \$50, the SSM 2020 Dual VCA and SSM 2050 VCTG ICs are available for \$7.50 each, and the SSM 2030 VCO and SSM 2040 VCF ICs are \$10.00 each. For more information or orders, contact E-mu Systems at. the ahove address. # **REVIEWS...** experiments with the recorded signal <u>after</u> (or while) the tracks are down. Little initial is said about mixing, submixing. noise reduction. line level processing, tape manipulation via changes or splicing. punch-ins, or even maintenance procedures for day - to - day operation. Perhaps thev have other books to cover these concepts, or intend for the user acquire this from equipment instruction manuals. Fortunately, there are other 'home recording' books readily available which cover these additional topics, but which are a bit light on the basic set-up "The procedures covered in Primer". Used Multitrack conjunction with the other books, this should provide answers to nearly all your questions about getting your first multitrack studio set up and into production. # SUPPORT OUR ADVERTISERS When writing for information, tell them you saw their products in... # POLYPHONY to be able to decide on element" (which is usually the module with the most input and output connections). He must also be able to distinguish between signal and control sources. For this reason it is recommended t.ha.t. beginners in electronic proficient music become flowcharting before tackling Jot. Most magazines that deal with electronic music have carried articles explaining flowchart notation at some time or other and should be a great help in this area. With moderate practice anyone can become
proficient in Jot. Once mastered, it can render great savings in time and writing space, and may help to increase one's understanding of system Of interconnection. course. further refinements would welcome and should be encouraged. If you have ideas, send them to Polyphony for future recaps of this article, or as a letter to the editor. Let us all use each others ideas. Perhaps the most exciting of these would be a Braille adaptation of Jot for sightless musicians, who may now rambling find the lines flowchart notation impossible track of. Whatever the keep modification, it is hoped that this system will keep musicians in the electronic thinking, talking exchanging ideas! We are still pioneers. # Equipment Exchange: A place for our readers to offer for sale or trade equipment related to music and electronics. Keep listings as brief as possible and enclose \$1.00 for each listing. Persons responding to ads should write directly to the other party. DO NOT write to POLYPHONY. Polyphony is not responsible for any claims made in ads or results of transactions. We reserve the right to refuse or edit any ads submitted. Technicians Wanted: to work on state of the art Prophet synthesizers. Analog and digital experience req'd, microprocessor and music background helpful. We are a small, rapidly growing company with a good working environment. Write or call: Sequential Circuits, Inc., 1172G Aster Ave., Sunnyvale, CA 94086, 408-296-3116. For Sale: Synthi AKS with touch sensitive keyboard, joystick, and pin matrix patching. recently recalibrated. \$1900. Brian Horner, 2316 1/2 Fair Park, Los Angeles, CA 90041, phone (work) 213-685-5141. For Sale: (3) 2720-2A VCO's modified for greater range and linearity, and lower distortion. Includes range controls. Two units have waveform switches. Also: 2720-14 Sine/PWM. All units exceed factory specs. Sold as set only, \$100. Gary Bannister, 7208 New Augusta Rd., Indianapolis, IN 46268. Please write before sending money. For Sale: Crumar Organizer w/legs, like new, \$950. Paia Gnome, perfect condition, \$90. Would like to trade for Apple II or sell. Bill Boydstun, 2207 N.W. 20, Oklahoma City, OK. For Sale: P4700J partially assembled and working. Heavy duty hardware, shielded patch cords, 8700 computer with cassette interface, software; tested and certified working by Paia techs. Sold to best offer due to disabling injury. Leo Hasting, 124 N. Fairview, Lansing, MI 48912, 517-371-5760. For Sale: MXR Phase 90, \$90; MXR distortion, \$50; Phlanger, \$60; Gnome, \$40. Everything works perfectly. Dan Collins, Maple Lane, Blandford, MA 01008, 413-848-2875. For Sale: Oz and Gnome, assembled and factory tested. 2 months old, will sell together or seperately. Will deal on used Stringz 'n' Thingz. Robert Hudler, P.O. Box 487, Fairfax, VA. For Sale: 2720-4 Function Generator, perfect condition. \$20 postpaid. Thomas L. Henry, 3801 Cornerwood Ln., Apt. 14, Charlotte, NC 28211 For Sale or Trade: 2700 modules in custom case, 4700 modules in 4761's. 8700 Keyboard with built-in D/A and glide. Also for sale, Paia Synthespin. Prefer sale as set, but will sell modules. SASE for prices to: Brian Parks, 342 Highland Ave., Johnstown, PA 15902 For Sale: 2720R plus -9, 4710, 4720, 4730, 4740; assembled in custom cabinet, many accessories. Meets or exceeds factory specs. \$500 value, sell for \$350 or best offer. Robert Smith, 6229 Osler St., San Diego, CA 92111, 714-560-6835. For Sale: 2720R, fully assembled. 3 years old, but like new. Steve Carmincke, 9905 Lancet Ln., Oklahoma City, OK 73120, 405-751-0607. For Sale: 1551 Stereo Option for Paia Stringz. Assembled but not tested. \$40. Gerard Pardeilhan, 1600 Baker St., San Francisco, CA 94115 For Sale: P4700J completely assembled, factory calibrated. \$800. Rene Curbelo, phone 305-595-8300. For Sale: Paia 2720R synthesizer, 2720 VCO, and OZ mini-organ. All or part, make offer. Chris Barrish, 22230 Euclid Ave. #401, Euclid, OH 44117, (216) 259-5905 or 531-5332. For Sale: P4700J Computer Synthesizer. New, never used, all parts working. D/A and Quash need assembly finished. \$750 firm. Also 3 watt blocks, mixer, modulator, and sequencer in road case. Some need work, \$50. Also have unassembled keyboard and road case, \$60. Frank Rogala, 4698 Barnum, Hastings, MI 49058. Phone 616-367-395%. For Sale: 2720-1, (2) -2A, -3B, -3L, -4, -5, -7, and -8 with glide in road case, -14, 4710, 4740, 4720, 4780 with custom panel, 4730 (unassembled), 1702, 3712 assembled board, and (2) 4770. All work, needs case. \$350 plus shipping. David Shade, 45B Parkway Apts., Cherry Hill, NJ 08034, (609) 795-1829 or 677-1570. # Local Happenings The following people wish to contact other synthesists and electronic music enthusiasts in their area to organize ensembles and exchange information. This column can also be used to list local concerts, meetings, or workshops. Soon, we hope to feature concert listings and an event calendar in this column. Frank Sole 30 Britten Rd. Green Village, NJ 07935 Wilfried Oswald 506 Chelsea Ave. Winnipeg, Manitoba Canada R2K 1A3 (204) 668-9812 # **INDEX-VOLUME 4** | | INDEA- | VOLUME 4 | | | | | |---|--|--|--|--|--|--| | FEATU | <u>PRES</u> | Sound of UFOs-Spoerri Nov/Dec 78,
In Memoriam-Sundquist Nov/Dec 78, | | | | | | A Compositional Method for
Composers, Ernst
Experimenting With Analog | July/Aug 78, p 1 Delay, | UK- UK | Sept/Oct 78, p 19
Jan/ Feb 79, p 35
July/Aug 78, p 7 | | | | | Jones
Name That Tone, VonLoh
Name That Tone- Again!,
Day and Fitzpatrick | July/Aug 78, p 1
July/Aug 78, p 2
Jan/ Feb 79, p 2 | O INDUSTRY NOTES: A/DA Final Phase | Sept/Oct 78, p 38
Jan/ Feb 79, p 16 | | | | | Some Thoughts About Conten Townsend Notes on the Recording of | porary Music,
Sept/Oct 78, p | BEEP Studios | Nov/ Dec 78, p 39
Nov/ Dec 78, p 39
Sept/Oct 78, p 39 | | | | | "CORDS", Fast
Electronic Music Notation,
Folkes | Sept/Oct 78, p | 6 Crumar Organs | Nov/ Dec 78, p 39
Sept/Oct 78, p 39
Nov/ Dec 78, p 39 | | | | | Rhythmic Control of Analog
Duesenberry
Shazam- Keyboard Operating | Sequencers,
Sept/Oct 78, p 2 | DiMarzio Pickup/Mixer | Sept/Oct 78, p 38
Jan/ Feb 79, p 17
July/Aug 78, p 28 | | | | | Software, Yannes
The Sohler Keyboard, Sohle
JOT- Shorthand Patch Notat | ion, | 6 Interval Magazine
Lexicon Pitch Shifter | July/Aug 78, p 27
July/Aug 78, p 28
Sept/Oct 78, p 39 | | | | | Mitchell <u>CONSTRUCTION ANI</u> | Jan/ Feb 79, p | 8 Otari Recorder Paia Regulated Supply Analog Delay kit RMI KC-II | Sept/Oct 78, p 39
Sept/Oct 78, p 38
July/Aug 78, p 27 | | | | | Trigger Delay, Pryor
Low Cost VCO, Grokett
Magic Buttons- Touch Switc | July/Aug 78, p
July/Aug 78, p 2 | 8 Roland Jupiter 4 | Sept/Oct 78, p 38
Sept/Oct 78, p 39
Jan/ Feb 79, p 16
Nov/ Dec 78, p 39 | | | | | Wood
Build a Modular Vocoder,
Wurstner | Sept/Oct 78, p 3 Sept/Oct 78, p 3 | SSM music ICs | Jan/ Feb 79, p 16
Jan/ Feb 79, p 17
Jan/ Feb 79, p 17 | | | | | Pet-Muse, Grokett
Voice Frequency to Voltage
Blacet | Nov/ Dec 78, p 1 | O PATCHES: | Jan/ Feb 79, p 17 | | | | | More F/V Converter Project Blacet | Jan/ Feb 79, p 3 | 3/4 Drum Score | July/Aug 78, p 30
July/Aug 78, p 30
July/Aug 78, p 31 | | | | | COLUMNS AND I | DEFARITANTS | 4/4 Rock Patterns
5/4 Drum Score | Sept/Oct 78, p 37
July/Aug 78, p 31 | | | | | Composer Profile, Ernst:
Barton/Priscilla McLe
George Russell | ean Nov/ Dec 78, p 4
Jan/ Feb 79, p 1 | | July/Aug 78, p 31
Sept/Oct 78, p 36
Sept/Oct 78, p 36 | | | | | Experimenters Circuits, Ba
Using the CA3080
A Super VCA | nnister:
Nov/ Dec 78, p 1
Jan/ Feb 79, p 2 | 4 Audio Amateur | -
Lady Records | | | | | Home Recording, Anderton:
Improve Freq. Balance
Build a Graphic Monit | | 2 Jan/ Feb 79, p 5 | Jan/ Feb 79, p 11 Paia July/Aug 78, pgs 5 13, 29, 32, 36 | | | | | Lab Notes, Simonton:
Pink Tunes
Seque and Ye Shall Fi | July/Aug 78, p 2
nd Sept/Oct 78, p 1 | | Sept/Oct 78, pgs 5, 33, 42, 44
Nov/ Dec 78, pgs 4, 19, 38, 44 | | | | | Blessed are the Seque | Nov/ Dec 78, p 3
Jan/ Feb 79, p 2 | 9 Sept/Oct 78, p 20
Nov/ Dec 78, p 20 | Jan/ Feb 79, pgs 4
13, 28, 40
Pratt Read Keyboards | | | | | REVIEWS: Home Recording for Mu Anderton | sicians-
July/Aug 78, p | Jan/ Feb 79, p 20
BSEM
6 Nov/ Dec 78, p 43 | Jan/ Feb 79, p 13
Serge Modular Music
Jan/ Feb 79, p 10 | | | | | wngel Alley- Cohen
Death of the World of
Dilulio | Sept/Oct 78, p 1 | 9 Jan/ Feb 79, p 39
Device | Speakerlab
Sept/Oct 78, p 5
Nov/ Dec 78, p 4 | | | | | Then There Were Three
Genesis | | Jan/ Feb 79, p 35 | SWTPC | | | | | Moving Pictures- Gilt
Just Got Here Myself-
Gleeson | ert Jan/Feb 79, p | 6 Jan/ Feb 79, p 4
Godbout | July/Aug 78, p 2
Sept/Oct 78, p 2
Nov/ Dec 78, p 2
Jan/ Feb 79, p 2 | | | | | Cellutron and the Inv
Greely
Hope- Klaatu | isible-
Nov/ Dec 78, p | Sept/Oct 78, p 8
7 Nov/ Dec 78, p 12
6 Jan/ Feb 79, p 9 | Synapse July/Aug 78, p 34 Sept/Oct 78, p 43 | | | | | SS [°] II- Laine
Open Fire- Montrose
Pyramid- Parsons | Jan/ Feb 79, p
Sept/Oct 78, p 1 | 7 Imagine | Jan/ Feb 79, p 39
Synergistics
Jan/ Feb 79, p 35 | | | | | Electronic Music from
Isle- Slepian
Voice of Taurus- Spoe | the Rainbow
Nov/ Dec 78, p | July/Aug 78, p 32
5 Sept/Oct 78, p 41 | va 100 13, p 33 | | | | | | | | | | | | # Subscribe to Synai For the people, the music, the instruments, and the ideas that make up the electronic music world. Featured in each issue are interviews with the most famous and the most obscure musicians, designers, and composers. You'll also find
performance and disc reviews, construction projects, technical articles and more. People involved in all aspects of synthesis have been reading Synapse for nearly two years. Find out what you've been missing. # SUBSCRIBE! Send your subscription order to:Synapse, Subscription Dept. PM___, 2829 Hyans Street, Los Angeles, California 90026 USA. All orders must be prepaid in US funds. Name Address City State/Country Zip ### If you live in the US: - \Box One year/six issues is \$8.00. - ☐ Two years/twelve issues is \$14.00. - ☐ One year/six issues by First Class Mail is \$14.00. ### If you live outside the US: - ☐ One year/six issues by surface mail is \$10.00. - ☐ Two years/twelve issues by surface mail is \$18.00. - ☐ One year/six issues by Air Mail is \$20.00. # BOSTON SCHOOL OF ELECTRONIC MUSIC After 6-1/2 years of operation, the school still offers the finest, most thorough, hands-on training in the techniques of audio synthesis. The curriculum also includes tape techniques, electronics, music theory and other courses related to analog and digital synthesis. 14 WEEK SUMMER SEMESTER BEGINS MAY 28, 14 WEEK FALL SEMESTER BEGINS IN SEPTEMBER. WRITE OR CALL FOR OUR NEW 1979 CATALOG. 28 Highgate St., Allston, MA 02134 phone (617) 782-9100 # P-4700/J POLYPHONIC... Of Course! SYNTHESIZER/COMPUTER But that's just the beginning, because only PAIA Synthesizer/Computers Allow you to use any of a growing number of personality programs. Including: ### **POLYPHONIC** MUS 1.0 - a 16 voice polyphonic synthesizer with software transient generators. ### **SEQUENCERS** SEQUE 1.0 - a general purpose monotonic sequencer. The P-4700/J Synthesizer/Computer package includes the following module complement: two 4710 Balanced Modulator VCAs, 4711 Stereo Mixer, 4712 Reverb, three 4720 Wide Range VCOs. two 4730 Multi-Modal VCFs, 4740 ADSR Envelope Generator, 2720-5 Control Oscillator/Noise Source, 8780 Digital to Analog Converter, 8781 QuASH (Quad Addressable Sample & Hold), and the 8782 POLY SEQUE - a 4 voice sequencer. # **COMPOSERS** PINK TUNES- Composes 4 part harmonies PINK FREUD - Composes 4 part canons. # SPECIAL EFFECTS ${\tt SHAZAM}$ - ${\tt Multiple}$ keyboard ${\tt split}$ and chorusing. ### AND MANY MORE COMING SOON! Intelligent Keyboard with 8700 Computer Controller housed in sturdy vinyl covered road cases. System firmware includes: PIEBUG - system monitor; POT-SHOT - cassette interface and MUS 1.0 synthesizer operating system. P-4700/J Synthesizer/Computer Kit . Includes all listed software (shipped freight collect) | | _PROGRAM_ | | | |-------|---------------|-----------|-------| | SCORE | EVENT | TRANS | REPT | | | PLAY_ | | 11122 | | CONT | STOP/
STEP | SINGL | ENTER | | TAI | PE | NOR | | | LOAD | SAVE | NORI | MAL | | | _ | TEMPO | | | CLIK | METR | DOWN | UP | | | OPTION _ | | = | | SYNC | METR | T-SEQ | CNCL | | • | RES | ST
2 | 3 | | Т | | ntrol par | iel | configuration ONLY FROM: **ELECTRONICS. INC.** 1020 WEST WILSHIRE BLVD. OKLAHOMA CITY, OKLAHOMA 73116 (405) 843-9626 | () | Sounds intriguing, | but I need | a <u>lot more i</u> | nformation. | Please | send the | e most | recent | edition | of | |-----|--------------------|------------|---------------------|---------------|--------|----------|--------|--------|---------|----| | | vour "Friendly Sto | ries About | Computers/ | Synthesizers" | | | \$3.00 | nostr | oaid | | - Please also send complete instruction manual set for the P-4700/J\$10.00 (refundable upon purchase of P-4700/J~Kit) - I've been with you all along. Please send complete P-4700/J Synthesizer/Computer Kit. Name: Address: Card No. Visa/BAC ____ Master Charge_ Expiration date: (signature) ELECTRONICS DEPT. 1020 W. WILSHIRE BLVD, OKLAHOMA CITY, OK 73116